0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
1 什么是剪枝?
剪枝(pruning)是一种可以提高算法时间和空间效率的技巧,经过剪枝的算法在执行效率上远超一般未经剪枝的算法。有些算法甚至可以通过剪枝优化降低计算的时间复杂度等级,突破应用瓶颈。
剪枝算法主要分为三类
-
可行性剪枝
如当前状态和问题要求不符,并且可以推出从该状态往后的演变都不满足要求,那么就可以进行剪枝——该状态的搜索终止 -
排除等效冗余
当某几个枝桠可以证明具有完全相同的效果时,只选择其中一个,其他状态搜索终止 -
最优性剪枝
最优性剪枝是基于搜索解决最优化问题时常用的剪枝方法。若证明当前状态比已经
本文深入探讨决策树的剪枝技术,包括预剪枝和后剪枝,阐述它们对提高算法效率和防止过拟合的作用。通过Python实现,展示了如何在西瓜数据集上应用剪枝策略,以提升决策树的泛化性能。
订阅专栏 解锁全文
2562

被折叠的 条评论
为什么被折叠?



