hadoop streaming 技术整理

本文详细梳理了Hadoop Streaming的工作原理,包括分布式计算框架、mapper和reducer的交互过程、数据处理逻辑以及跨语言支持。通过分析map-reduce流程,解释了数据如何在mapper与reducer之间传输、排序和合并。此外,还探讨了如何在压缩文件与split支持之间取得平衡,以及streaming如何允许使用任意可执行程序进行map和reduce操作。
摘要由CSDN通过智能技术生成

这两年零零散散用hadoop做了些项目,也看了些hadoop相关资料,每回都是现学现用。这回做kbuild项目,要用到hadoop streaming,发现很多东西又忘了,趁这次机会把hadoop相关的知识再过一遍整理下。

hadoop由两部分构成,分布式文件系统hdfs,和并行计算框架map-reduce。做应用开发,都是跟map-reduce打交道;hdfs逻辑上相对来说比较简单,可以参考:http://hadoop.apache.org/common/docs/current/hdfs_design.html 。map-reduce相关文档:http://hadoop.apache.org/common/docs/current/mapred_tutorial.html; http://hadoop.apache.org/common/docs/current/streaming.html 。 

map一般做分布式计算,reduce做数据收集。map对外提供的编程接口:map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter),处理输入的KV对,处理结果放到output中;output的结果经由框架处理,传递给reduce,相应接口:reduce(K2 key, Iterator<V2> values, OutputCollector<K3, V3> output, Reporter reporter),对一个key一系列的value处理结束后,结果再放入output中。这样一个简单的map-reduce就结束了。框架层面会帮我们处理以下事情:

1. mapper的数量如何确定,这些mapper该起在那些tasktracker机器上࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值