GBDT的原理和应用

本文介绍了GBDT(梯度提升决策树)原理及其在过拟合问题上的解决方案,通过与LR(逻辑回归)结合,形成GBDT+LR模型。重点讲解了特征生成和组合过程,以及XGBoost在实践中的应用,如模型训练、部署和特征变换。
摘要由CSDN通过智能技术生成

参考地址GBDT的原理和应用 - 知乎

一直以来,GBDT-LR凭借着良好的表达能力和可解释性成为各大厂最重要的模型之一。

概述

DT-Decision Tree决策树,GB是Gradient Boosting,是一种学习策略,GBDT的含义就是用Gradient Boosting的策略训练出来的DT模型。模型的结果是一组回归分类树组合(CART Tree Ensemble):T1……Tk。其中Tj学习的是之前j-1棵树预测结果的残差,这种思想就像准备考试前复习,先做一遍习题册,然后把做错的题目挑出来,在做一次,然后把做错的题目挑出来在做一次,经过反复多轮训练,取得最好的成绩。

而模型最后的输出,是一个样本在各个树中输出的结果的和:

 假设我们要预测一个人是否会喜欢电脑游戏,特征包括年龄,性别是否为男,是否每天使用电脑。标记(label)为是否喜欢电脑游戏,假设训练出如下模型

 

该模型由两棵树组成,T1使用age<15和is male作为内节点,叶子节点是输出的分数。T2使用是否每日使用电脑作为根节点。假设测试样本如下:

 样本在两棵树中所在的叶节点如下:

 最后对某样本累加它所在的叶子节点的输出值,例如:

 GBDT + LR

单独的使用GBDT模型,容易出现过拟合,在实际应用中往往使用GBDT+LR的方式做模型训练,算法更多细节可以参考 [Practical Lessons from Predicting Clicks on Ads at Facebook]。本文只介绍结论性的做法。

首先根据样本训练出GBDT树,对于每个叶子节点,回溯到根节点都可以得到一组组合特征,所以用叶子节点的标号可以代表一个新组合特征。结合上面的图,用一个样本为例,直观的表达如下:

其中 0号 组合特征的含义是:ageLessThan15AndIsMale,该样本取值 0
其中 1号 组合特征的含义是:ageLessThan15AndIsNotMale,该样本取值 1
其中 2号 组合特征的含义是:ageLargerOrEqualThan15,该样本取值 0
其中 3号 组合特征的含义是:useComputerDaily,该样本取值 0
其中 4号 组合特征的含义是:notUseComputerDaily,该样本取值 1

这部分特征是GBDT生成的组合特征,再结合LR固有的稀疏特征,就组成了GBDT+LR模型。生成样本向量阶段,样本首先过GBDT模型,生成组合特征部分的输入向量,再结合固有的稀疏特征向量,组成新特征向量,示例如下:

 在该例子中,第一行绿颜色是通过 GBDT 模型生成的特征向量,每个值都代表一个叶子节点的输出(样本在某棵树只在一个叶子节点有输出),第二行表示 LR 模型的稀疏特征向量,第三行表示把两部分特征向量拼接在一起,组成一个最终的特征向量,并使用该向量训练LR模型。

实践

XGBoost是GBDT最广为人知的一个实现。通过使用一定程度的近似,使得求解变得更高效。同时支持分布式和 GPU 优化,有着广泛的使用。在实践中,算法工程师使用 Spark 或者Python 的 XGBoost 库训练模型,并保存成文件,线上根据不同的语言采用相应的依赖包,将模型导入,执行决策。Java 中使用 xgboost4j 导入模型,完成特征变换后,调用 predict 方法,就可以得到当前样本的预测值。

 需要注意的是,xgboost4j 需要链接到本地库,需要自己编译并打包。首先在本地编译 xgboost4j,生成平台相关的本地库文件,例如 linux 下生的 libxgboost4j.so。然后把这个文件连同xgboost4j 的源代码一起,发布成一个新的工程,供线上依赖。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值