怀旧之偶尔做道题(4): 12球称重问题(2)

目录

1. 前言

2. 12球的3次称重解

3. 上界估计


1. 前言

        前情概要参见怀旧之偶尔做道题(4): 12球称重问题(1)  。

        本篇先给出一个网上遍地能找到的12球3次称重解吧,算是为了这个12球称重问题系列的完整性。当然,我不想停留于抄一个解放在这里,而是希望由此能进一步摸索解决这类问题的更本质的解决方案。

    

2. 12球的3次称重解

        下图以判决树的方式来表示称重解的过程。

        上图中,每次称重后的括号内表示剩余的可能性,右上角为”+“表示重,”-“表示轻。比如说A_1^+表示异常球为A1且为重的可能性。

        在以上方案中,覆盖了(考虑第一次称重后出现”右重“结果与出现”左重“的情况是对称的)24种可能的情况。

        在这个方案中,最关键的是右边分支(第一次称重后两边重量不等时)的第二次称重的组合选择。但是,这个神来之笔是怎么来的呢?如果能够基于更底层的逻辑或者规则推到出这个来的话就完美了。这个神来之笔是否具有唯一性呢?

3. 上界估计

        在上一篇中在说明理论上12球称重3次应该足够时的理由是:从信息论的角度来说有,

\log_2(24) < 3*\log_23=log_227

        More generally, 对于M个小球的称重问题最少需要次数为:

N >= log_3{(2*M)}        

N_{min} = ceil(log_3{(2M)})

        或者,反过来说,N次称重最多能够解决的称重问题的球的个数为:M_{max}=floor(\frac{3^N}{2})

        但是,事实上这个关于M(N)的上界的估计不够紧。

        上一篇中提到的著名物理学F.J.Dyson在年轻时(1946年)给出的是更紧的上界,即N次称重最多可以从\frac{3^N-3}{2}个小球中找出不同的球。基于这个准则,当N=3时可以判断12个小球的质量,但是13个球通过3次称重就无法完全判断出来,尽管同样满足条件:

log_2{(2*13)}=log_2{26}<log_2{27}=3*log_23

         但是不知道他有没有给出对于不同球数时的具体称重方案的构造方法呢?

        欲知后事如何,且听下回分解。

        上一篇: 怀旧之偶尔做道题(4): 12球称重问题(1)https://blog.csdn.net/chenxy_bwave/article/details/120773590

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值