群论基础速成(4):群的积与商的关系

目录

0. 前言

1. 商群概念回顾

2. 群的直积与商是逆运算吗?

2.1 群的直积运算是可交换的

2.2 因子群一定是直积群的正规子群        

2.3 子群H和商群G/H的直积不能还原G

        【反例1】

        【反例2】

2.4 直积群关于一个因子的商群同构于另一个因子吗?

2.5 正规子群和对应的商群的关系是对称的吗?

 3. 再加上半直积会怎么样呢?


0. 前言

        业余爱好小白的群论自学笔记。没有目的,为了学习而学习。用自己能够理解的方式沿着自己的思路进行整理记述(东施效颦小平邦彦的抄书学数学),不求严谨完备,但求逻辑连贯。

        上一篇(群论基础速成(3):拉格朗日定理、直积与半直积)介绍了基于小的群构造更大的群的技术之直积和半直积,上上一篇(群论基础速成(2):子群,陪集,正规子群,商群)则介绍了正规子群和商群。

        本篇来看一看(半)直积群与商群之间的关系。更具体一点来说就是,群的积运算与商运算是不是跟初等代数中那样是逆运算的关系呢?

1. 商群概念回顾

        如果群H是群G的正规子群,则H在G中的陪集集合在特定的陪集运算下构成一个群,记为G/H,称为G的商群(Quotient group, factor group).

        进一步,每个群都包含它自身和Z1两个商群。如果一个群除此两个商群以外没有其它的商群,则称之为简单群(simple group)。简单群的这个定义听起来很像自然数中的质数(素数,prime number)。回头来看,简单群应该命名为prime group更为合适,但是由于路径依赖原则,过去的事情就只好将错就错地让它过去了。其实,商群的英文之一“factor group”也是一个比较misleading的词。在直积群的定义中,通常也称两个相乘的群为因子(群),似乎这个地方用“factor group”要合适一些,除非,两者恰好是等价的。但是,根据以下讨论,我们将知道两者显然不等价。

2. 群的直积与商是逆运算吗?

        上一节我们提到简单群与素数的定义有很相像的地方。

        我们知道,自然数的因子分解与乘法运算是互逆运算,即a * b = c \Leftrightarrow c/b = a, c/a = b.

        很自然地,我们会想,那群的直积与商是互逆的运算吗?比如说,

  1. H和G是由G和H构成的直积群G \otimes H的正规子群吗?
  2. 如果(1)的答案是Yes的话,该直积群关于其中一个因子的商群一定同构于另一个因子吗,即(G\otimes H) / H \cong H成立吗?
  3. 由G的正规子群H和对应的商群G/H的直积能还原出群G吗?
  4. 正规子群和对应的商群的关系是对称的吗?即G/H还是正规子群吗?进一步,G/H对应的商群(G/(G/H))同构于H吗?

        以下试图不加证明(是因为修行太浅还给不出合理像样的证明^-^,甚至也难以给出通俗解释。不过真的关心证明过程的话应该去找严肃的数学教科书)的回答以上这些问题。

2.1 群的直积运算是可交换的

        这个结论在上一篇就提到过了。

2.2 因子群一定是直积群的正规子群        

        在任何直积群中,其因子都是正规子群。

2.3 子群H和商群G/H的直积不能还原G

        【反例1】

        我们知道,\mathbb{Z}_4 / \mathbb{Z}_2 \cong \mathbb{Z}_2

        但是,\mathbb{Z}_2 \otimes \mathbb{Z}_2 \cong \mathbb{Z}_4并不成立。事实上,我们知道\mathbb{Z}_2 \otimes \mathbb{Z}_2 \cong \mathbb{V}_4。即两个Z2的直积同构于克莱因四元群(同构于4阶二面体群),而克莱因四元群并不同构于Z4.

                

                                 图1 左图:V4(克莱因四元群);右图:Z4;

        如上图所示,左图为V4,描述的是一个长方形的沿纵向和横向的翻转的对称。右图为Z4,描述的是一个正方形的旋转对称性。两者显而易见是不同的。

        那。。。V4/Z2是否同构于Z2呢?

        【反例2】

        \mathbb{D}_3 / \mathbb{Z}_3 \cong \mathbb{Z}_2

        \mathbb{Z}_6 / \mathbb{Z}_3 \cong \mathbb{Z}_2

        但是,Z6与D3并不同构!

        进一步,\mathbb{Z}_6 \cong \mathbb{Z}_3 \otimes \mathbb{Z}_2

        BTW,D3与S3是同构的。

        由以上两个反例可以看出,子群H和商群G/H的直积不一定能还原G(有时候能)。

        这充分说明了群的直积运算与求商运算不是互逆的运算。

        事实上(我猜测。。。待验证),对于n = 2m,n和m皆为自然数,总是有:

  1. Zn/Zm同构于Z2
  2. Dm同构于Zm与Z2的直积
  3. Dm与Zn并不同构

2.4 直积群关于一个因子的商群同构于另一个因子吗?

        上一节已经提出了这个问题。

        嗯。。。还没有想明白,容我再想想后再来回答这个问题。

2.5 正规子群和对应的商群的关系是对称的吗?

        嗯。。。还没有想明白,容我再想想后再来回答这个问题。

        总而言之,言而总之,群的分解与自然数的分解的确尤其相似之处,但是不要随意地将这种类比扯得太远!自然数的分解是可逆,而群的分解则不是可逆的。        

 3. 再加上半直积会怎么样呢?

        上一章我们已经非常明确地知道了群的直积运算与商运算不是互逆的(否定一个论断总是相对简单的,只要找出一个反例就可以了),那如果再加上半直积如何呢?

        直接上结论:

        考虑半直积和直积构成的群的积运算,这个积运算是商运算的逆过程!

        也就是说,对于群G和它的正规子群H,群G或者是H与商群G/H的直积,或者是H与商群G/H的半直积。

        比如说,以上例子中,

        D3是C3和C2的半直积,而D3/C3同构于C2。

        Z6是C3和C2的直积,同样有Z3/C3同构于C2。

        D3和Z6虽然结构不同,但是在求商的过程中抹掉了这种不同之处,得到了相同的结果!(更详细精彩的描述可参考《群论彩图版》第7章)

下篇预告:五个典型群族

回到总目录:群论基础速成(A crash course for group theory)(1)https://chenxiaoyuan.blog.csdn.net/article/details/122702319

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值