DoRA:大模型微调从LoRA到DoRA,还有哪些模型微调的优化空间

一句话总结:将预训练权重分解为大小(magnitude)和方向(direction)两个组成部分,并分别对它们进行微调,较LoRA进一步细化。

先简单复习一下LoRA:

即通过低秩矩阵展开,将原本需要微调的全基础网络,变成仅需要微调低秩展开矩阵的形式,大幅度减少了所需的参数量。

更新方式:

在2020年的文章《Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning》中,已经证明了在预训练的NLP模型中,可以投影到更低维度的子空间,同时保持较好的最终表现。

回到DoRA:


首先我们给出一个完整流程图(尤其注意和LoRA的对比,多了一层):

它将预训练权重分解为幅度和方向组件用于微调,尤其是与LoRA一起使用以有效更新方向组件。其中|| · ||c表示矩阵的每个列向量的向量范数。

权重解耦的Low-Rank Adaptation:

DoRA方法的核心是将预训练的权重分解为两个部分:大小(magnitude)和方向(direction)。 这种分解基于权重归一化(Weight Normalization)的思想,旨在通过重新参数化权重矩阵来加速优化过程。

初始化权重分解:

预训练权重:记为𝑊0∈𝑅𝑑×𝑘,其中𝑑d和𝑘k分别是权重矩阵的维度。

分解:权重矩阵𝑊被分解为𝑊=𝑚𝑉,其中𝑚∈𝑅1×𝑘是大小向量,𝑉∈𝑅𝑑×𝑘是方向矩阵,且∥𝑉∥𝑐=∥𝑊∥𝑐,保证了𝑉的每一列在初始化时都是单位向量。

微调过程:

首先固定方向矩阵:在微调过程中,方向矩阵𝑉被保持固定,而大小向量𝑚m被设为可训练的参数。LoRA应用于方向更新:方向组件的更新通过LoRA方法实现,即使用两个低秩矩阵𝐵∈𝑅𝑑×𝑟和𝐴∈𝑅𝑟×𝑘的乘积来学习方向更新Δ𝑉,其中𝑟≪min⁡(𝑑,𝑘)。

更新后的权重表示:

微调后的权重:记为𝑊′,可以表示为𝑊′=𝑚(𝑉+Δ𝑉),或者等价地表示为:

其中𝐵𝐴是LoRA方法中用于更新的低秩矩阵乘积。

DoRA的梯度计算:


观察DoRA如何通过其权重分解策略来影响梯度的计算。

梯度表达式的推导步骤:

STEP1,权重矩阵的更新:权重矩阵𝑊′通过分解为𝑚(𝑉+Δ𝑉),其中Δ𝑉是低秩更新。

STEP2,损失函数关于W′的梯度:记为∇𝑊′𝐿,是损失函数𝐿关于权重矩阵𝑊′的梯度。

STEP3,损失函数关于m和V′的梯度:推导出损失函数关于大小向量𝑚和方向矩阵𝑉′=𝑉+Δ𝑉的梯度,分别为∇𝑚𝐿和∇𝑉′𝐿。

我们进一步,基于以上公式。更深入地理解DoRA的学习模式。

这里假设向量𝑤′′=𝑤′+Δ𝑤表示权重向量的参数更新,其中Δ𝑤与∇𝑤′𝐿(损失函数关于权重𝑤′的梯度)成比例。

假设更新场景 S1 和 S2:

S1:涉及较小的方向更新(Δ𝐷𝑆1)。

S2:涉及较大的方向更新(Δ𝐷𝑆2)。

假设条件:∣∣Δ𝑤𝑆1∣∣=∣∣Δ𝑤𝑆2∣∣,意味着两个场景下的更新向量具有相同的范数(长度)。

更新方向的比较:

方向更新的比较:由于Δ𝐷𝑆1<Δ𝐷𝑆2,可以推断出∣cos⁡(Δ𝑤𝑆1,𝑤′)∣>∣cos⁡(Δ𝑤𝑆2,𝑤′)∣,这表明较小的方向更新在方向上与原始权重𝑤′w′的差异更小。

梯度与更新的关系:由于Δ𝑤与∇𝑤′𝐿成比例,较小的方向更新意味着∣cos⁡(∇𝑆1𝑤′𝐿,𝑤′)∣>∣cos⁡(∇𝑆2𝑤′𝐿,𝑤′)∣,即梯度与权重向量在方向上的差异更小。

初始化和梯度计算:

初始化:在时间0时,Δ𝑣=0且𝑣′=𝑣。

梯度计算:使用余弦相似性公式,当Δ𝑣=0时,cos⁡(∇𝑤′𝐿,𝑣′)=∇𝑤′𝐿⋅𝑣∣∣∇𝑤′𝐿∣∣⋅∣∣𝑣∣∣。

大小更新的梯度及比较:

大小更新的梯度:记𝑚∗为向量𝑤′的大小标量,则方程(7)关于𝑚∗可以重写为

梯度比较:由于∣∣Δ𝑤𝑆1∣∣=∣∣Δ𝑤𝑆2∣∣和∣∣∇𝑆1𝑤′𝐿∣∣=∣∣∇𝑆2𝑤′𝐿∣∣,可以推断出∣∇𝑆1𝑚∗𝐿∣>∣∇𝑆2𝑚∗𝐿∣,表明在具有相同大小更新的情况下,S1有更大的大小更新和较小的方向变化。

降低训练开销:


在标准的DoRA实现中,由于需要对方向组件Δ𝑉进行更新,因此在反向传播过程中,𝑊′和Δ𝑊的梯度相同,但Δ𝑉的更新会导致额外的内存消耗。

为了解决这个问题,论文提出了一种将∥𝑉+Δ𝑉∥𝑐 在反向传播中视为常数的方法。这意味着,尽管∥𝑉+Δ𝑉∥𝑐会动态地反映Δ𝑉的更新,但在反向传播期间不会接收梯度。

通过这种修改,梯度计算不会依赖于∥𝑉+Δ𝑉∥𝑐的动态变化。因此,梯度∇𝑉′𝐿可以重新定义为:

实验验证:

论文通过在LLaMA和VL-BART模型上的实验来验证这种修改对训练内存消耗和模型准确率的影响。实验结果显示,这种修改可以在微调LLaMA时将训练内存消耗减少约24.4%,在VL-BART上减少约12.4%。

同时,对于VL-BART,修改后的DoRA准确率保持不变;对于LLaMA,准确率仅有微不足道的下降(0.2%)。

实验部分:


在Llama-7B和Llama-13B伤的对比数据:

其他任务下和LoRA的横向对比:

在LLAMA2-7B下不同steps的优化对比:

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值