为什么要做大语言模型?

前几天,刘慈欣在做客直播间的时候说,自己的演讲稿是用ChatGPT写的,因为实在没有时间写了,这个工具用来写演讲稿还是挺好用的。今年马上就要过去一半了,ChatGPT和大语言模型的热度一直不减。今天试着聊聊“各大科技公司为什么要研发大语言模型”这件事。

大语言模型是一种人工智能的数据模型,研究这个技术的目的是让机器自动理解和生成人类的语言。让机器拥有处理人类语言任务的功能,比如阅读分析、问答、对话、写文稿等等。

大语言模型的开发原理,类似于我们小时候语文课考试的填空题。建立一个上下文语境,给机器喂足够的语料数据,让它自动猜测出这个空里面是什么。比如,现在下午6点,到了吃____的时间了。

只要有足够的语料数据,机器就能够猜测出____部分大概率要填的词是“晚饭”。而不是“石头”或者“数学”之类加进去会让人感到莫名其妙的词。

因为在计算机处理信息过程中,文本和图形、图像、视频这些信息的处理方式相似,所以大语言模型不止能够处理文本生成,同样的机器也能生成画和视频、影像这些作品。也就是机器能自己写文章、能画画、能做电影。

OpenAI公司从2015年成立开始做ChatGPT,微软公司又投资100亿美元给它,是为了让机器人代替人类写稿和画画吗?当然不是。

这就涉及到一个问题:科技公司为什么要做大语言模型。

应该说,大语言模型是一个工具,人类文明进化的过程也就是发明、制造和改进工具的过程。人类发明石器、骨器,到后来的青铜器、机械、电器,再到现在的智能化设备,其实一直都是在给人的脑力和体力开外挂。以便更好的改造自然和提升自身的生存质量。

在经历了石器、青铜器、铁器、机器、电气时代之后,人类文明走到了信息时代。

信息时代的特征就是,信息和数据成为了社会发展的重要资源和经济驱动力。因此,生产过程中所用到的设备和工具需要模拟人脑思维来处理信息和数据。各国的科技竞争比拼,最终成了信息处理速度和效率的比拼。

大语言模型就是这样一个工具。

从ChatGPT迭代后的功能,我们都已经看到了大语言模型技术的优势。能够生成连贯和有逻辑的文本,实现跨语言处理,模型灵活、可拓展,能够适配很多专业领域(只要有足够的专业语料)。

但是大语言模型技术的发展也有门槛和局限。

第一个门槛就是对计算机算力的需求极高。大语言模型技术是一种机器深度学习技术,训练所用的数据量和模型嵌套的概念层次结构复杂性远超之前的技术。每个抽象概念都要一些更简单的概念进行定义,以层层嵌套的方式,让机器从逻辑上对语料数据进行计算和反馈。

训练和推理过程在云端进行,需要很高的并行计算和矩阵运算能力。终端设备只是一个反馈接受装置。传统的计算机基于CPU的计算架构无法满足这种算力需求,在硬件上需要适合AI架构的专属芯片。

企业在实际训练过程中,应用于图形和图像处理的GPU因为能够胜任大量的并行数据处理而成为了主流的人工智能计算载体。大语言模型的训练依赖功能强大的GPU。

此外,目前的大语言模型在处理文本时,还无法区分其中哪些文字比较重要,或者判断字与字之间的关联度高低。也就无法有效压缩上下文长度。还有,大语言模型无法自我判断输出的东西是否属于对人类有毒害的内容。对于大语言模型生成的内容,仍然还需要人类进行审查。

以ChatGPT为代表的大语言模型技术一推出就引发了国际社会不断讨论。微软推出了植入ChatGPT4的搜索引擎和办公工具,引发了新一代办公工具的革命。

新一代Office能自动生成会议报告、自动根据内容分发邮件,根据工作任务给员工分组并且分发各自的工作任务,对工作效率有明显的提升。

大语言模型技术带给我们的想象还远远不止这些,以机器深度学习平台和大模型为代表的AI新型基础设施,代表着社会生产方式的转变,进而将引发工作模式和教育领域的一系列变革。这也就是这一轮“你的工作会不会被AI代替”的讨论为什么能够引发社会广泛关注的原因。

作为打工人个体,可能要思考自己要怎样做出机器所不能替代的东西。这才是人的独特价值。我们可能要学会和机器合作,共同产出更好的作品;让机器激发人的创造力,而不是永远依赖机器而造成自身能力的退化。

在行业层面,大模型技术已经引发了高科技行业内很多公司的竞相追逐。下一步,进入到影视、汽车、家居等传统行业,又有无限创新的想象空间带给我们。

马斯克要把GPT植入到特斯拉汽车,实现真正的自动驾驶。植入到人形机器人,让机器人拥有人的思维和性格。用脑机接口技术连接人的大脑,让人和机器实现相互塑造。

大语言模型只是AI发展的起点。人类发明新技术的同时,也在重塑自身。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值