0 基本知识
生成模型:朴素贝叶斯、混合高斯模型、隐马尔可夫模型
判别模型:感知机、k近邻法、决策树、逻辑斯蒂回归模型、最大熵模型、支持向量机 (SVM)、boosting方法 (AdaBoost等)、条件随机场 (conditional random field, CRF)、CNN
一、感知机
二、KNN
三、朴素贝叶斯
https://www.cnblogs.com/marc01in/p/4775440.html
四、logistic regression和最大熵模型
彻底搞懂逻辑斯蒂回归
五、决策树、决策数和随机森林
六、SVM
七、boosting(提升方法AdaBoost)和bagging
八、EM算法
EM算法(Expectation Maximization Algorithm)详解
九、HMM
https://blog.csdn.net/continueoo/article/details/7789358
http://www.cnblogs.com/pinard/p/6955871.html
十、CRF
入门:https://www.cnblogs.com/skyme/p/4651331.html
详解:https://blog.csdn.net/a819825294/article/details/53893231
十一、聚类
k-Means: 聚类、K-Means、例子、细节
层次聚类
十二、常用的几种距离
https://blog.csdn.net/g1036583997/article/details/80606789
十三、DTW
https://www.cnblogs.com/Daringoo/p/4095508.html
十四、用二分类问题解决多分类问题