hdoj 1878 欧拉回路

欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10015    Accepted Submission(s): 3663


Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。

Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。

Sample Input
  
  
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0

Sample Output
  
  
1 0
并查集+欧拉     dfs+欧拉
 
并查集:
 
#include<stdio.h>
#include<string.h>
#define max 1000+10
int path[max],set[max];
int find(int p)
{
    int child=p;
    int t;
    while(p!=set[p])
    p=set[p];
    while(child!=p)
    {
        t=set[child];
        set[child]=p;
        child=t;
    }
    return p;
}
void merge(int x,int y)
{
    int fx=find(x);
    int fy=find(y);
    if(fx!=fy)
    set[fx]=fy;
}
int main()
{
    int n,m,i,j,x,y,exist,sum;
    while(scanf("%d",&n)&&(n!=0))
    {
        for(i=1;i<=n;i++)
        set[i]=i;
        scanf("%d",&m);
        memset(path,0,sizeof(path));
        while(m--)
        {
            scanf("%d%d",&x,&y);
            merge(x,y);
            path[x]++;
            path[y]++; 
        }
        exist=0;sum=0;
        for(i=1;i<=n;i++)
        {
            if(set[i]==i)
            {
                exist++;
                if(exist>1)
                break;
            }
            if(path[i]&1)
            sum++;
        }
        if(exist>1)
        {
            printf("0\n");
            continue; 
        }
        if(sum==0)
        printf("1\n");
        else
        printf("0\n");
    }
    return 0;
}

dfs:
 
#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f
#define max 1000+10
int n,m;
int path[max],visit[max],map[max][max];
void dfs(int x)
{
    int i;
    visit[x]=1;
    for(i=1;i<=n;i++)
    {
        if(!visit[i]&&map[i][x])
        dfs(i);
    }
}
int main()
{
    int i,j,x,y,c,exist,sum;
    while(scanf("%d",&n)&&(n!=0))
    {
        memset(map,0,sizeof(map));
        memset(path,0,sizeof(path));
        memset(visit,0,sizeof(visit));
        scanf("%d",&m);
        while(m--)
        {
            scanf("%d%d",&x,&y);
            map[x][y]=map[y][x]=1;
            path[x]++;
            path[y]++;
        }
        dfs(1);
        sum=0;exist=1;
        for(i=1;i<=n;i++)
        {
            if(!visit[i])
            {
                exist=0;
                break;
            }
            if(path[i]&1)
            sum++;
        }
        if(!exist)
        {
            printf("0\n");
            continue;
        }
        if(sum==0)
        printf("1\n");
        else
        printf("0\n");
    }
    return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值