欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10015 Accepted Submission(s): 3663
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0
并查集+欧拉 dfs+欧拉
并查集:
#include<stdio.h>
#include<string.h>
#define max 1000+10
int path[max],set[max];
int find(int p)
{
int child=p;
int t;
while(p!=set[p])
p=set[p];
while(child!=p)
{
t=set[child];
set[child]=p;
child=t;
}
return p;
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
set[fx]=fy;
}
int main()
{
int n,m,i,j,x,y,exist,sum;
while(scanf("%d",&n)&&(n!=0))
{
for(i=1;i<=n;i++)
set[i]=i;
scanf("%d",&m);
memset(path,0,sizeof(path));
while(m--)
{
scanf("%d%d",&x,&y);
merge(x,y);
path[x]++;
path[y]++;
}
exist=0;sum=0;
for(i=1;i<=n;i++)
{
if(set[i]==i)
{
exist++;
if(exist>1)
break;
}
if(path[i]&1)
sum++;
}
if(exist>1)
{
printf("0\n");
continue;
}
if(sum==0)
printf("1\n");
else
printf("0\n");
}
return 0;
}
dfs:
#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f
#define max 1000+10
int n,m;
int path[max],visit[max],map[max][max];
void dfs(int x)
{
int i;
visit[x]=1;
for(i=1;i<=n;i++)
{
if(!visit[i]&&map[i][x])
dfs(i);
}
}
int main()
{
int i,j,x,y,c,exist,sum;
while(scanf("%d",&n)&&(n!=0))
{
memset(map,0,sizeof(map));
memset(path,0,sizeof(path));
memset(visit,0,sizeof(visit));
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=1;
path[x]++;
path[y]++;
}
dfs(1);
sum=0;exist=1;
for(i=1;i<=n;i++)
{
if(!visit[i])
{
exist=0;
break;
}
if(path[i]&1)
sum++;
}
if(!exist)
{
printf("0\n");
continue;
}
if(sum==0)
printf("1\n");
else
printf("0\n");
}
return 0;
}