KPI
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1093 Accepted Submission(s): 469
Problem Description
你工作以后, KPI 就是你的全部了. 我开发了一个服务,取得了很大的知名度。数十亿的请求被推到一个大管道后同时服务从管头拉取请求。让我们来定义每个请求都有一个重要值。我的KPI是由当前管道内请求的重要值的中间值来计算。现在给你服务记录,有时我想知道当前管道内请求的重要值得中间值。
Input
有大约100组数据。
每组数据第一行有一个 n(1≤n≤10000) ,代表服务记录数。
接下来有n行,每一行有3种形式
"in x": 代表重要值为 x(0≤x≤109) 的请求被推进管道。
"out": 代表服务拉取了管道头部的请求。
"query: 代表我想知道当前管道内请求重要值的中间值. 那就是说,如果当前管道内有m条请求, 我想知道,升序排序后第 floor(m/2)+1th 条请求的重要值.
为了让题目简单,所有的x都不同,并且如果管道内没有值,就不会有"out"和"query"操作。
每组数据第一行有一个 n(1≤n≤10000) ,代表服务记录数。
接下来有n行,每一行有3种形式
"in x": 代表重要值为 x(0≤x≤109) 的请求被推进管道。
"out": 代表服务拉取了管道头部的请求。
"query: 代表我想知道当前管道内请求重要值的中间值. 那就是说,如果当前管道内有m条请求, 我想知道,升序排序后第 floor(m/2)+1th 条请求的重要值.
为了让题目简单,所有的x都不同,并且如果管道内没有值,就不会有"out"和"query"操作。
Output
对于每组数据,先输出一行
Case #i:
然后每一次"query",输出当前管道内重要值的中间值。
Case #i:
然后每一次"query",输出当前管道内重要值的中间值。
Sample Input
6 in 874 query out in 24622 in 12194 query
Sample Output
Case #1: 874 24622
思路:用一个vector 和 queue去维护信息,入队和出队用vecotr迭代器插入删除就OK了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (10000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
int main()
{
int N, kcase = 1;
while(Ri(N) != EOF)
{
vector<int> G;
vector<int> ::iterator it;
queue<int> Q;
printf("Case #%d:\n", kcase++);
W(N)
{
char op[10];
Rs(op); int x;
if(op[0] == 'i')
{
Ri(x);
it = upper_bound(G.begin(), G.end(), x);
G.insert(it, x);
Q.push(x);
}
else if(op[0] == 'o')
{
int v = Q.front(); Q.pop();
it = find(G.begin(), G.end(), v);
G.erase(it);
}
else
Pi(G[G.size()/2]);
}
}
return 0;
}