题目链接:bzoj 1257: [CQOI2007]余数之和sum
题意:让你统计 sum(n,k)=∑ni=1(k%i) 。
思路:我们先将
a%b
变为
a−a/b∗b
。
这样就是求解
n∗k−∑ni=1(k/i∗i)
我们总体分块来搞,对于
k/i
,在
1−n
里面肯定会有一些
i、j...
使得
k/i=k/j=...
。
这样的话,我们分两部分去求解。
一、枚举
i
到
二、(假设还没到
n
)剩余的
总时间复杂度O(sqrt(k))
AC 代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#define PI acos(-1.0)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define fi first
#define se second
#define ll o<<1
#define rr o<<1|1
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MAXN = 5*1e3 + 1;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
void getmax(int &a, int b) {a = max(a, b); }
void getmin(int &a, int b) {a = min(a, b); }
void add(LL &x, LL y) { x += y; x %= MOD; }
int main()
{
int n, k; scanf("%d%d", &n, &k);
// LL s = 0;
// for(int i = 1; i <= n; i++) {
// s += 1LL * (k % i);
// }
// printf("%lld\n", s);
LL ans = 1LL * n * k;
int m = sqrt(k);
for(int i = 1; i <= min(m, n); i++) {
ans -= k / i * i;
}
if(n > m) {
if(k / m == m) m--;
for(int i = 1; i <= m; i++) {
int l = k / (i+1), r = min(n, k / i);
if(k / l > i) l++;
if(l > r) continue;
//cout << l << " " << r << endl;
ans -= 1LL * i * (l + r) * (r - l + 1) / 2;
}
}
printf("%lld\n", ans);
return 0;
}