以下是国内主要大模型的对比及其特点总结(截至2024年6月),按技术路线和应用场景分类:
一、通用大模型
1. 百度·文心一言(ERNIE Bot)
-
技术架构:基于ERNIE 4.0,千亿参数,多任务统一学习框架
-
特点:
-
多模态能力突出(文本、图像、视频生成)
-
中文理解强,支持古文、成语等复杂语义
-
企业级工具链完善(ERNIE SDK)
-
-
应用场景:营销文案、设计辅助、企业知识库
2. 阿里云·通义千问(Qwen)
-
技术架构:MoE混合专家模型(最大1.8万亿参数)
-
特点:
-
开源版本齐全(1.5B/7B/14B/72B)
-
支持超长上下文(百万token级)
-
代码生成能力接近GPT-4水平
-
-
应用场景:编程助手、长文档分析、金融数据处理
3. 科大讯飞·星火大模型
-
技术架构:认知智能增强(V3.5版本)
-
特点:
-
语音交互能力行业领先
-
教育领域专用优化(试题解析、教案生成)
-
多端部署(手机端1.5B轻量版)
-
-
应用场景:智能硬件、教育辅导、会议记录
二、垂直领域大模型
4. 深度求索·ChatGLM(智谱AI)
-
技术架构:GLM-4,支持10M上下文窗口
-
特点:
-
开源生态完善(HuggingFace热门模型)
-
支持函数调用(API工具链)
-
长文本摘要精度达92%
-
-
应用场景:科研文献分析、法律文书处理
5. 华为·盘古大模型
-
技术架构:行业定制L0→L1→L2三层架构
-
特点:
-
行业模型覆盖全(气象、医药、制造)
-
联合昇腾芯片优化
-
天筹求解器支持复杂决策
-
-
应用场景:气象预测、药物研发、供应链优化
6. 字节跳动·云雀大模型
-
技术架构:多模态对齐技术
-
特点:
-
抖音生态深度整合(短视频脚本生成)
-
跨语言生成(支持100+语种)
-
端云协同推理加速
-
-
应用场景:内容创作、跨境电商、本地化运营
三、开源大模型
7. 零一万物·Yi系列
-
技术架构:200k上下文窗口,34B参数量
-
特点:
-
长文本处理效率提升40%
-
Apache 2.0完全开源协议
-
数学推理能力突出(GSM8K准确率82.3%)
-
-
应用场景:学术研究、数据分析
8. 上海AI Lab·书生·浦语(InternLM)
-
技术架构:MoE结构,1.8万亿token训练
-
特点:
-
工具调用能力增强(支持500+API)
-
多模态扩展接口开放
-
训练效率提升(千卡并行效率80%+)
-
-
应用场景:机器人控制、自动化流程
四、性能对比关键指标
模型 | MMLU(中文) | C-Eval | 代码能力(HumanEval) | 推理速度(tokens/s) |
---|---|---|---|---|
文心一言4.0 | 82.1 | 85.3 | 56.7 | 78 |
通义千问2.0 | 79.8 | 83.9 | 68.2 | 92 |
ChatGLM-4 | 76.5 | 81.2 | 61.4 | 105 |
星火V3.5 | 73.4 | 78.6 | 48.9 | 85 |
选型建议
-
企业服务:文心一言(合规性强)、盘古(行业定制)
-
开发者:通义千问(全尺寸开源)、Yi系列(数学/代码)
-
硬件部署:ChatGLM(端侧优化)、星火(语音交互)
-
研究用途:书生·浦语(工具调用)、InternLM(长文本)
趋势观察:国产模型在长上下文、多模态对齐、行业适配等方面形成差异化优势,但复杂推理和创造性任务仍与GPT-4存在约12-18个月代差。2024年下半场竞争焦点预计在具身智能和3D生成领域。