RSA--e与φ(n)不互素时

一、题目

n1=0xcfc59d54b4b2e9ab1b5d90920ae88f430d39fee60d18dddbc623d15aae645e4e50db1c07a02d472b2eebb075a547618e1154a15b1657fbf66ed7e714d23ac70bdfba4c809bbb1e27687163cb09258a07ab2533568192e29a3b8e31a5de886050b28b3ed58e81952487714dd7ae012708db30eaf007620cdeb34f150836a4b723L
e1=0xfae3aL
c1=0x81523a330fb15125b6184e4461dadac7601340960840c5213b67a788c84aecfcdc3caf0bf3e27e4c95bb3c154db7055376981972b1565c22c100c47f3fa1dd2994e56090067b4e66f1c3905f9f780145cdf8d0fea88a45bae5113da37c8879c9cdb8ee9a55892bac3bae11fbbabcba0626163d0e2e12c04d99f4eeba5071cbeaL
n2=0xd45304b186dc82e40bd387afc831c32a4c7ba514a64ae051b62f483f27951065a6a04a030d285bdc1cb457b24c2f8701f574094d46d8de37b5a6d55356d1d368b89e16fa71b6603bd037c7f329a3096ce903937bb0c4f112a678c88fd5d84016f745b8281aea8fd5bcc28b68c293e4ef4a62a62e478a8b6cd46f3da73fa34c63L
e2=0x1f9eaeL
c2=0x4d7ceaadf5e662ab2e0149a8d18a4777b4cd4a7712ab825cf913206c325e6abb88954ebc37b2bda19aed16c5938ac43f43966e96a86913129e38c853ecd4ebc89e806f823ffb802e3ddef0ac6c5ba078d3983393a91cd7a1b59660d47d2045c03ff529c341f3ed994235a68c57f8195f75d61fc8cac37e936d9a6b75c4bd2347L
assert pow(flag,e1,n1)==c1
assert pow(flag,e2,n2)==c2
assert gcd(e1,(p1-1)*(q1-1))==14
assert gcd(e2,(p2-1)*(q2-1))==14

求flag

二、分析
1、给了n1,n2想到公约数

def gcd(a,b):
    if b!=0:
        return gcd(b,a%b)
    else:
        return a
n1=145902412361478782344770381873783700413638083575664796147183684992615987925480426688706400688307583005196450858827113757408777361940584125700594767997877530445777012630266331221234501260829837820315200747919668506933176146599166089445798737129024362167061966283411487243534460764772316650320961711082540676899
n2=149099187170511972630955070342575714830336629001429055523308641067867185643738492089983321303377141971663123411968339764579768625561000509534051657156505686277638053591553620131562538158327446457847814787147698749502556552831112070838138070024147578824279983531049306936118687161116949990664307619657857322083

p=gcd(n1,n2)
print("gcd(n1,n2)=%d\n"%(p))
gcd(n1,n2)=12120327527644543811107783655014863098833219936714394976342507913322405566177432644931575840816861543106701611662013978324877080018872656490603706071067111

p=gcd(n1,n2)

接下来求q1,q2

q1=n1//p
q2=n2//p
print("p=%d\n"%(p))
print("q1=%d\n"%(q1))
print("q2=%d"%(q2))

得到

p=12120327527644543811107783655014863098833219936714394976342507913322405566177432644931575840816861543106701611662013978324877080018872656490603706071067111

q1=12037827528067911684278967221392433256129944002157200272548317200308481572950474775891360447285969682243206009995242277136633522897723532096467191105943909

q2=12301580698247665838432962460247894405698817646605188562297985838079356879336309758823376086396761749681729993573203954506346863479448531269351981555913253

然后,因为e与φ(n)不互素,所以不能直接求出逆元d
只有当他们互素时,才能保证e的逆元d唯一存在。
在这里插入图片描述

2、下面进行等式运算,来找到解题思路
还是要求逆元,则要找到与φ(n)互素的数
在这里插入图片描述
我们已知b=14
从上面的推算,可得a与φ(n)互素,于是可唯一确定bd
于是求出bd
gmpy2.invert(a,φ(n))

然后想到bd/b,求出d,然后求明文。可是,经测试求出的是乱码,这个d不是我们想要的

3、根据推导的最后一个公式,bd可作为私钥来求解出m^14。想到低指数破解的方法,可是14并不小。
想一下,给两组数据,应该有两组数据的作用,据上面的结论,我们可以得到一个同余式组
在这里插入图片描述
进一步推导
在这里插入图片描述
可以计算出特解m
m=solve_crt([m1,m2,m3], [q1,q2,p])
我们想到模n1,n2不行那模q1*q2呢,
这里res可取特值m
在这里插入图片描述
那么问题就转化为求一个新的rsa题目
e=14,经计算发现此时e与φ(n)=(q1-1)(q2-1),还是有公因数2。
那么,我们参照上述思路,可得出m^2,此时直接对m开方即可。
在这里插入图片描述
在这里插入图片描述
4、解题脚本

n1=0xcfc59d54b4b2e9ab1b5d90920ae88f430d39fee60d18dddbc623d15aae645e4e50db1c07a02d472b2eebb075a547618e1154a15b1657fbf66ed7e714d23ac70bdfba4c809bbb1e27687163cb09258a07ab2533568192e29a3b8e31a5de886050b28b3ed58e81952487714dd7ae012708db30eaf007620cdeb34f150836a4b723L
e1=0xfae3aL
c1=0x81523a330fb15125b6184e4461dadac7601340960840c5213b67a788c84aecfcdc3caf0bf3e27e4c95bb3c154db7055376981972b1565c22c100c47f3fa1dd2994e56090067b4e66f1c3905f9f780145cdf8d0fea88a45bae5113da37c8879c9cdb8ee9a55892bac3bae11fbbabcba0626163d0e2e12c04d99f4eeba5071cbeaL
n2=0xd45304b186dc82e40bd387afc831c32a4c7ba514a64ae051b62f483f27951065a6a04a030d285bdc1cb457b24c2f8701f574094d46d8de37b5a6d55356d1d368b89e16fa71b6603bd037c7f329a3096ce903937bb0c4f112a678c88fd5d84016f745b8281aea8fd5bcc28b68c293e4ef4a62a62e478a8b6cd46f3da73fa34c63L
e2=0x1f9eaeL
c2=0x4d7ceaadf5e662ab2e0149a8d18a4777b4cd4a7712ab825cf913206c325e6abb88954ebc37b2bda19aed16c5938ac43f43966e96a86913129e38c853ecd4ebc89e806f823ffb802e3ddef0ac6c5ba078d3983393a91cd7a1b59660d47d2045c03ff529c341f3ed994235a68c57f8195f75d61fc8cac37e936d9a6b75c4bd2347L
from libnum import *
import gmpy2
p=gcd(n1,n2)
q1=n1/p
q2=n2/p
assert(p*q1==n1)
assert(p*q2==n2)
f1=(p-1)*(q1-1)
f2=(p-1)*(q2-1)
tmp=14

e1=e1/tmp
e2=e2/tmp
bd1=invmod(e1,f1)
bd2=invmod(e2,f2)

m1=pow(c1,bd1,n1)
m2=pow(c2,bd2,n2)
m3=m1%p
m2=m2%q2
m1=m1%q1

m=solve_crt([m1,m2,m3], [q1,q2,p]) 
print m
n=q1*q2
f=(q1-1)*(q2-1)
m=m%n
2d=invmod(7,f)
m=pow(m,2d,n)
print n2s(gmpy2.iroot(m, 2)[0])

感谢一叶飘零

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页