题意:求n连续矩形能够形成的最大矩形的面积.
给出n个连续矩形的宽和长,求能形成的最大矩形的面积.
分析:***(有力气了再补上)
emmmmmmm现在有力气了,首先对于每一个矩形,找到所能延伸到的最左和最右,然后以当前矩形为大矩形的高,最左矩形到最右矩形之间这些矩形的宽度和为宽,求得一个面积,然后找出这些面积最大的.那么现在的首要问题就是如何找延伸到的最左和最右了,就以最左为栗子,那么就是从当前矩形一直往左,发现有一个矩形的高度比他的要小,那么小的矩形的后一个就为最左,最右也同理,用单调栈维护即可.
参考代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<iostream>
using namespace std;
const int maxn = 5e4+10;
int n;
int w[maxn],h[maxn];
int l[maxn],r[maxn];
int main()
{
while( ~scanf("%d",&n) && n != -1)
{
for( int i = 1; i <= n; i++)
scanf("%d%d",&w[i],&h[i]);
stack<int> s;
for( int i = 1; i <= n; i++)
{
while( !s.empty() && h[s.top()] >= h[i])
s.pop();
if( !s.empty())
l[i] = s.top()+1;
else
l[i] = 1;
s.push(i);
}
while( !s.empty())
s.pop();
for( int i = n; i >= 1; i--)
{
while( !s.empty() && h[s.top()] >= h[i])
s.pop();
if( !s.empty())
r[i] = s.top()-1;
else
r[i] = n;
s.push(i);
}
int ans = 0;
for( int i = 1; i <= n; i++)
{
int len = 0;
// printf("l[%d]=%d,r[%d]=%d\n",i,l[i],i,r[i]);
for( int j = l[i]; j <= r[i]; j++)
len += w[j];
ans = max(ans,h[i]*len);
// printf("len=%d h=%d ans=%d\n",len,h[i],ans);
}
printf("%d\n",ans);
}
return 0;
}