密码学中的差分性质与NTRU变体研究
1. 差分密码分析相关研究
在差分密码分析领域,对于S - 盒的活动情况与差分概率有着深入的研究。当允许不同数量的S - 盒处于活动状态时,会出现不同数量且具有特定差分概率的差分情况。
- 不同活动S - 盒数量下的差分情况 :
- 若仅允许一个S - 盒活动,存在具有相同差分概率的情况。
- 若允许两个S - 盒活动,有11种不同的差分((0, ∆z_2)),使得(dp_F(0, ∆z_2 → ∆z_2, ∆z_2) ≥ 2^{-6})。
- 若允许三个S - 盒活动,有4种差分((0, ∆z_2)),使得(dp_F(0, ∆z_2 → ∆z_2, ∆z_2) ≥ 2^{-3})。
- 这些结果可通过对不同数量的差分进行穷举搜索来证明,在所有情况下,计算相应的差分概率需要(Θ(log n))步,即使有3个活动S - 盒,该方法仍然高效。
- 研究结论 :如果能够容忍两个活动S - 盒,就有可能找到一个概率高28倍的差分,这种概率的急剧增长在某些情况下可能会弥补需要第二个活动S - 盒的不足,甚至可能导致对Twofish的攻击。
此外,还扩展了之前的研究成果,开发了一个线性代数框架来证明加法(在(Z_{2n})中)和相关函数相对于异或(或在(Z_n^2)中加法)的差分性质。能够计算不同函数(如减法和伪哈达玛变换)的差分概率,证明方法具有一定的独立价值。例如,证明了(2^αx ± 2^βy)((α ≤ β + 1))的差分概率等于某个矩阵方程的解的数量。最后,给出了部分Twofish轮函数的最优差分,证明了某些差分在给定条件下是最
超级会员免费看
订阅专栏 解锁全文
42

被折叠的 条评论
为什么被折叠?



