48、从密钥加密到混淆加密:技术解析与应用

从密钥加密到混淆加密:技术解析与应用

布尔电路的可分解乱码方案

对于布尔电路类 $C = {C_{\lambda}} {\lambda \in N}$,其中每个 $C \in C {\lambda}$ 具有一定的电路规模、输入规模、深度、扇出和分解电路规模。假设存在 $\delta$-安全的单向函数,那么 $C$ 具有一个可分解乱码方案,该方案具有 $(\sigma, \tau, \delta)$-可分解不可区分性。其中,混合电路大小的界限 $\sigma = poly(\lambda, d, log L, \phi, \Delta)$,混合的数量 $\tau = L \cdot 2^{O(d)}$,不可区分性差距为 $\delta^{\Omega(1)}$。

单密钥弱简洁 PKFE 方案构建
  1. 布尔函数的弱简洁 PKFE 方案
    • 定理 8 :对于具有单个输出位的电路族 $C = {C_{\lambda}}_{\lambda \in N}$,给定输入长度、大小和深度的界限。在一些假设条件下,存在一个 $2ds\delta$-安全的简洁 PKFE 方案,其压缩因子为 $\gamma$。
    • 深度保持通用电路 :为证明上述定理,需用到深度保持通用电路。具体来说,电路族 $C$ 有一个统一的通用电路族 ${U_{\lambda}}_{\lambda \in N}$,具有特定的扇出、深度和大小。
    • 构造要素和符号
内容概要:本文介绍了基于Hartree-Fock方法X-α泛函密度泛函理论的分子体系量子化学计算研究,并提供了相应的Matlab代码实现。研究聚焦于量子化学中电子结构计算的核心问题,通过自洽场迭代求解分子体系的基态能量电子分布,结合Hartree-Fock近似X-α经验交换泛函方法,简化计算复杂度的同时保持一定的物理准确性。文中详细阐述了算法原理、数学模型构建、数值求解流程及关键步骤的编程实现,适用于中小分子体系的能级结构分析,是理论化学计算物理交叉领域的重要实践。; 适合人群:基于Hartree-FockX-α泛函密度泛函理论的分子体系量子化学计算研究(Matlab代码实现)具备量子力学基础、计算化学或计算物理背景,熟悉Matlab编程的研究生、科研人员及高年级本科生。; 使用场景及目标:①理解Hartree-Fock方法密度泛函理论的基本原理及其在分子体系中的应用;②掌握量子化学计算中自洽场迭代、哈密顿矩阵构造对角化的数值实现方法;③通过Matlab代码动手实现分子能量计算,辅助教学演示或科研原型开发。; 阅读建议:建议读者结合量子化学教材同步学习,重点关注算法实现物理模型之间的对应关系,调试代码时逐步验证各模块输出,如基函数选择、重叠积分、Fock矩阵构建等,确保计算结果的合理性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值