从密钥加密到混淆加密:技术解析与应用
布尔电路的可分解乱码方案
对于布尔电路类 $C = {C_{\lambda}} {\lambda \in N}$,其中每个 $C \in C {\lambda}$ 具有一定的电路规模、输入规模、深度、扇出和分解电路规模。假设存在 $\delta$-安全的单向函数,那么 $C$ 具有一个可分解乱码方案,该方案具有 $(\sigma, \tau, \delta)$-可分解不可区分性。其中,混合电路大小的界限 $\sigma = poly(\lambda, d, log L, \phi, \Delta)$,混合的数量 $\tau = L \cdot 2^{O(d)}$,不可区分性差距为 $\delta^{\Omega(1)}$。
单密钥弱简洁 PKFE 方案构建
-   布尔函数的弱简洁 PKFE 方案  
  - 定理 8 :对于具有单个输出位的电路族 $C = {C_{\lambda}}_{\lambda \in N}$,给定输入长度、大小和深度的界限。在一些假设条件下,存在一个 $2ds\delta$-安全的简洁 PKFE 方案,其压缩因子为 $\gamma$。
- 深度保持通用电路 :为证明上述定理,需用到深度保持通用电路。具体来说,电路族 $C$ 有一个统一的通用电路族 ${U_{\lambda}}_{\lambda \in N}$,具有特定的扇出、深度和大小。
- 构造要素和符号
 
 
                       
                           
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1247
					1247
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            