[有关图算法的优化模板]

本来是打算更新在原来的篇文章下面的。但是自己每次找的时候就很麻烦。(果然还是要背下来啊)

 单源&&正权&&稠密图的最短路---->Dij朴素

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int N=510;
const int INF=0x3f3f3f;

int dist[N],g[N][N];
bool st[N];
int n,m;

int dij(){
    memset(dist,INF,sizeof(dist));
    dist[1]=0;
    for(int i=0;i<n;i++){
        int t=-1;
        for(int j=1;j<=n;j++)
            if(!st[j]&&(t==-1||dist[t]>dist[j])) t=j;
        if(t==n) break;
        st[j]=true;
        for(int j=1;j<=n;j++){
            dist[j]=min(dist[j]+dist[t]+g[t][j]);
        }
    } 
    return dist[n];   
}


int main(){
    cin>>n>>m;
    memset(g,INF,sizeof(g));
    for(int i=0;i<m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=min(g[a][b],c);
    }
    
    int t=dij();
    cout<<t;
    return 0;

}

1.st数组表示一个顶点是否已经确定最短路

单源&&正权&&稀疏图的最短路---->Dij优化

#include<iostream>
#include<algorithm>
#include<string.h> 
#include<queue>
using namespace std;
typedef pair<int,int> PII;

const int N=1.5e5+10;
const int INF=0x3f3f3f3f;

int n,m;
int h[N],e[N],ne[N],w[N],id;
int dist[N];
bool st[N];

void add(int a,int b,int c){
    e[id]=b;w[id]=c;ne[id]=h[a];h[a]=id++;
}

int dij(){
    memset(dist,INF,sizeof(dist));
    dist[1]=0;

    priority_queue<PII,vector<PII>,greater<PII> > heap;
    heap.push({0,1});
    while(heap.size()){
        auto t=heap.top();
        heap.pop();
        int ver=t.second;
        if(st[ver]) continue;
        st[ver]=true;
        for(int i=h[ver];i!=-1;i=ne[i]){
            int j=e[i];
            if(dist[j]>dist[ver]+w[i]){
                dist[j]=dist[ver]+w[i];
                heap.push({dist[j],j});
            }
        }   
    }
    if(dist[n]==INF) return -1;
    return dist[n]; 
}

int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof(h));
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    cout<<dij();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值