[循环卷积 || 循环矩阵] HHHOJ #120. 随

首先推一下式子,变成求

1nm(ak1ak2..akm mod P)=1nmkk[ak1ak2..akm mod P==k]

注意模 P 是在 里面的。现在只需求 Fk=[ak1ak2..akm mod P==k]
容易想到 DP, fij %pfi×cntj 。做 m 次。其中 cnti 表示 ai 的个数。
如果借助原根,转化成 g 的次幂,就变成 f(i+j)%(P1)fi×cntj。本质上就是做 m 次循环卷积。快速幂+暴力卷就可以 O(P2logm)。如果用 FFT 求卷积就可以 O(PlogPlogm)
其实不用原根转化,也可以直接类似快速幂的搞,叫倍增也行吧…
如果考虑用矩阵乘法优化 DP,直接做会T。但发现转移矩阵是个循环矩阵。就可以只维护一行,每次乘 O(P2)。本质上和上面的做法是一样的(写出来也一样),只是如果直接矩阵乘就做了很多无用功。

#include<cstdio>
#include<algorithm>
using namespace std;
const int MOD=1e9+7,maxp=1005;
typedef long long LL;
LL n,m,P,g,ans,gp[maxp],n_gp[maxp];
LL Pow(LL a,LL b){
    LL res=1;
    for(;b;b>>=1,a=a*a%MOD) if(b&1) res=(res*a)%MOD;
    return res;
}
int vis[maxp],clk;
bool check(int g){
    clk++;
    for(LL i=1,now=g;i<=P-1;i++,now=(now*g)%P){
        if(vis[now]==clk) return false;
        gp[i]=now; n_gp[now]=i; vis[now]=clk;
    } 
    return true;
}
const int maxn=305;
int c[maxn];
inline void Mul(int a[],int b[],int n){
    for(int i=0;i<n;i++){
        c[i]=0;
        for(int j=0;j<n;j++) (c[i]+=(LL)a[j]*b[(i-j+n)%n]%MOD)%=MOD;
    }
    for(int i=0;i<n;i++) a[i]=c[i];
}
int cnt[maxp],T[maxn],res[maxn],T_n,T_m,res_n,res_m;
int main(){
    freopen("A.in","r",stdin);
    freopen("A.out","w",stdout); 
    scanf("%lld%lld%lld",&n,&m,&P);
    for(g=2;g<=P-1;g++) if(check(g)) break;
    gp[0]=1; n_gp[1]=0;
    for(int i=1;i<=n;i++){
        int x; scanf("%d",&x);
        cnt[n_gp[x]]++;
    }
    for(int i=0;i<=P-2;i++) T[i]=cnt[i];
    res[0]=1; 
    for(int b=m;b;b>>=1,Mul(T,T,P-1)) if(b&1) Mul(res,T,P-1);
    for(int i=0;i<=P-2;i++) (ans+=(gp[i]*res[i])%MOD)%=MOD;
    printf("%lld\n",((ans*Pow(Pow(n,m),MOD-2)%MOD)+MOD)%MOD);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许可转载。 https://blog.csdn.net/CHHNZ/article/details/78479878
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭