OSI模型各层的功能理解

这周的任务是学习SIP和RTSP协议,对于这两个协议之前是从未接触过,简单的百度了一下,发现是OSI应用层的协议,猛然感觉对OSI模型知识的掌握已经模糊了,在这里还是记下来吧,便于自己的理解和日后翻看。本来是昨天已经完成的任务,但晚上开会到快9点,算了,回去睡觉吧。没有春天的杭州好热好热-- 那...

2019-04-09 15:18:22

阅读数 27

评论数 0

AlexNet网络练习

 testAlwex.py #!/usr/bin/env python # coding: UTF-8 #.npy 存放w,b参数的值 import os import urllib.request import argparse import sys import alexnet impor...

2018-11-15 20:37:55

阅读数 175

评论数 0

深度学习短视频笔记

  输入和输出的关系由模型来描述,整理好数据的下一步是选择适当的模型。 前馈神经网络(隐藏层):在线性模型的基础上增加若干次(线性模型+非线性模型(激活函数)的组合)。如图在线性模型前再加两个线性模型,并且两个线性模型后都加一个ReLU非线性函数。效果:当输出小于0时取0,否则不变。 ...

2018-11-04 13:27:09

阅读数 251

评论数 0

tensorflow常见函数

Numpy.random.normal(loc=0.0,scale=1.0,size=None) 高斯分布函数 loc:该概率分布的均值,对应着整个分布的中心(center) scale:该概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高 size:输出的s...

2018-11-01 10:29:14

阅读数 88

评论数 0

CNN猫狗识别

train.py import dataset import tensorflow as tf import time from datetime import timedelta import math import random import numpy as np # conda ins...

2018-10-19 20:13:30

阅读数 304

评论数 0

python shape()函数和format()函数用法

shape() shape():读取矩阵长度,如shape[0]是读取矩阵第一维的长度。 1.参数是一个数时,返回为空:     2.参数是一维矩阵: 3.参数是二维矩阵:  4.直接用shape()可快速读取矩阵的形状,shape[0]读取矩阵第一维的长度  5....

2018-10-14 10:26:19

阅读数 1009

评论数 0

Cifar-10图像分类任务

Cifar-10数据集 Cifar-10数据集是由10类32*32的彩色图片组成的数据集,一共有60000张图片,每类包含6000张图片。其中50000张是训练集,1000张是测试集。 数据集的下载地址:http://www.cs.toronto.edu/~kriz/cifar.html 1...

2018-10-12 21:21:38

阅读数 428

评论数 0

简单CNNdemo

卷积神经网络添加了卷积层(激活函数),最大池化层和全连接层。 卷积层:对原始图像进行特征提取。 最大池化层:没有参数。压缩图像,体积变小。 全连接层:把卷积提取的特征组合在一起,用组合到一起的特征再进行分类。 1.导入包 import tensorflow as tf import r...

2018-10-10 21:32:42

阅读数 186

评论数 0

双层简单神经网络demo

#Mnist数据集 属性已经写好 可以直接调用 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf #one_hot=True 表示对label进行one-hot编码,比如标签4...

2018-10-10 10:43:35

阅读数 392

评论数 0

单层神经网络demo

  神经网络做的是提前特征的工作,与逻辑回归相比,添加了中间层和激活函数。 这里输入设置为784,输出的分类为10 隐藏层:让输入的特征进行更好的组合变化,把784个特征按照某种方式映射成更高级,识别能力更强的特征。这里把隐藏层设置为50个单元。 1.导入包 #Mnist数据集 属性已...

2018-10-09 21:30:15

阅读数 100

评论数 0

python随笔

列表: yang = []。里面可放任何类型,没有长度限制。 len(yang) 长度 del a[0]删除a的第0个元素 8 in a:判断8是不是在a中 a.count(‘8’)查看a中有几个8. a.index(‘8’)查看8在a的第几个位置。 a.append(‘8’)在a中...

2018-10-08 10:55:45

阅读数 35

评论数 0

tensorflow中的tensor和session

Tensot(张量) 张量:tensorflow内部的计算都基于张量,使用tf.tensor类的示例表示张量 # 张量 #引入tensorflow模块 import tensorflow as tf #创建0阶tensor t0 = tf.constant(3,dtype=tf.int32)...

2018-10-05 20:58:19

阅读数 490

评论数 0

Mnist数据集逻辑回归分类任务

#Mnist数据集逻辑回归分类任务 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf #one_hot=True 表示对label进行one-hot编码,比如标签4可表示为[0...

2018-10-05 16:25:01

阅读数 403

评论数 0

mnist数据集

#Mnist数据集 属性已经写好 可以直接调用 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import i...

2018-09-28 15:10:09

阅读数 57

评论数 0

tensorflow线性回归

#线性回归 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #随机生成1000个点 围绕在y = 0.1x + 0.3直线周围 num_points = 1000 vectors_set =...

2018-09-28 14:02:40

阅读数 49

评论数 0

深度学习中的概念

IOU 交并比函数:实际物体框与算法检测物体狂的交集大小与并集大小的比值,用来目标衡量定位的精准度 。一般大于0.5为正确。 YOLU  将图片分成多个小格,分别判断每个小格中是否有目标,算法速度较快。 非最大值抑制 保证算法对每个对象只检测一次。 实现方法:找出IOU最高的一个框,并...

2018-09-20 18:58:05

阅读数 57

评论数 0

Inception网络

作用:代替人工来确定卷积层中过滤器的类型,或者确定是否需要创建卷积层或池化层。 基本思想:不需要人为的决定使用哪个过滤器,或者是否需要池化,而是由网络自行确定这些参数。人们只需给出这些参数的所有可能值,然后把这些输出连起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合,所以主要用在不想选...

2018-09-19 10:04:22

阅读数 62

评论数 0

几种经典网络

LeNet-5    LeNet-5主要是针对灰度图像训练,用来识别手写体数字等。随着网络层数的加深,图像的宽度和高度减小,信道数增加。最后是得到了84个特征。 AlexNet    能处理非常相似的基本构造模块。采用相似的含有大量隐藏单元或数据的基本构造模块使得AlexNet表现出色。...

2018-09-19 09:32:20

阅读数 125

评论数 0

残差网络

残差块 残差块是两层神经网络在L层激活,得到a[l+1]再次进行激活。在ReLU非线性激活前加上a[l],a[l]的信息直接到达神经网络的深层 不再沿着主路径传递。也称跳远连接(捷径)。 跳远连接构成残差块,残差块构成残差网络。  由此得出a[l+2]=a[l]。所以尽管多了两层,也...

2018-09-18 18:32:10

阅读数 111

评论数 0

受限玻尔兹曼机

马尔可夫过程:将来只依赖于现在不依赖过去的过程。 马尔可夫链:时间和状态都是离散的马尔可夫过程。  BM是全连接的,RBM是可见层之间不连接,隐层之间不连接。 基于对比散度的RBM快速学习算法     训练RBM 输入:一个训练样本,隐层单元个数m,学习速率,最大训练周期T ...

2018-09-15 22:07:10

阅读数 58

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭