1、机器学习的概述
背景、发展现状、基本概念。
2、场景解析
数据探查、场景抽象、算法选择
3、数据预处理
采用(随即、系统、分层)、归一化、去除噪声、数据过滤
4、特征工程
特征抽象、特征重要性评估、特征衍生、特征降维。
5、机器学习算法
- 分类算法(K近邻、朴素贝叶斯、逻辑回归、支持向量机、随机森林)
- 聚类算法(K-means、DBSCAN)
- 回归算法
- 文本分析算法(分词算法-Hmm、TF-IDF、IDA)
- 推荐类算法
- 关系图算法(标签传播、Dijkstra最短路径)
6、机器学习算法 —— 深度学习
- 深度神经网络
- 卷积神经网络
- 循环神经网络
7、机器学习工具
- 单机版本(SPSS、R语言、工具对比)
- 分布式版本(Spark MLib、TensorFlow)
- 企业级别(亚马逊AWS ML、阿里云机器学习API)
8、业务解决方案
- 心脏病预测
- 商品推荐系统
- 金融风控案例
- 新闻文本分析
- 农业贷款发放预测
- 雾霾天气成因分析
- 图片识别
9、知识图谱
- 未来数据采集
- 知识图谱开源工具