AVL树

1. 二叉搜索树的缺陷

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

2. AVL树的概念

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:(前提是一颗二叉搜索树)

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1 / 0 / 1)。
    -在这里插入图片描述
3. AVL树节点的定义
template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr)
		, _pRight(nullptr)
		, _pParent(nullptr)
		, _data(data)
		, _bf(0)  
	{}
	AVLTreeNode<T>* _pLeft; // 该节点的左孩子
	AVLTreeNode<T>* _pRight; // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;  //节点的值
	int _bf; // 该节点的平衡因子
};
4. AVL 树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入
过程可以分为两步:
1.按照二叉搜索树的方式插入:

	bool Insert(const T& data)
	{
		// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
		if (nullptr == _pRoot)
		{
			_pRoot = new Node(data);
			return true;
		}
		// 按照二叉搜索树的性质找data在AVL中的插入位置
		PNode pCur = _pRoot;
		PNode pParent = nullptr;
		while (pCur)
		{
			pParent = pCur;
			if (data < pCur->_pLeft;
			else if (data > pCur->_data)
				pCur = pCur->_data;
			else
				return false; // 该节点在二叉搜索树中存在
		}
		pCur = new Node(data);
		// 插入新节点:新节点一定插入在pParent的左侧或者右侧
		if (data < pParent->_data)
			pParent->_pLeft = pCur;
		else
			pParent->_pRight = pCur;
		// 更新pCur的双亲节点
		pCur->_pParent = pParent;
		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
		//此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
		
			//...
			return true;
	}
  1. 调整节点的平衡因子
    在这里插入图片描述
    由上图可以看出,如果给pParent(即节点的双亲)右边插入,只需给双亲的平衡因子+1即可,如果给双亲的左边插入,只需给双亲的平衡因子-1即可。(我们计算平衡因子的方式:右子树高度 减左子树的高度)。

双亲节点更新完成前:平衡因子可能是:-1,0,1.
双亲节点平衡因子更新后:可能是:-2,-1,0,1,2。
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。

2.如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1, 此时以pParent为根的树的高度增加,需要继续向上更新。

3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理。

	bool Insert(const T& data) {
		// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
		// ...
		// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,
		//此时就需要更新平衡因子,并检测是否破坏了AVL树
		//的平衡性
		/*
		pCur插入后,pParent的平衡因子一定需要调整,在插
		入之前,pParent的平衡因子分为三种情
		况:-1,0, 1, 分以下两种情况:
		1. 如果pCur插入到pParent的左侧,只需给
		pParent的平衡因子-1即可
		2. 如果pCur插入到pParent的右侧,只需给
		pParent的平衡因子+1即可
		此时:pParent的平衡因子可能有三种
		情况:0,正负1, 正负2
		1. 如果pParent的平衡因子为0,说明插入
		之前pParent的平衡因子为正负1,插入后被
		调整成0,此时满足AVL树的性质,插入成功
		2. 如果pParent的平衡因子为正负1,说明
		插入前pParent的平衡因子一定为0,插入
		后被更新成正负1, 此时以pParent为根的树
		的高度增加,需要继续向上更新
		3. 如果pParent的平衡因子为正负2,
		则pParent的平衡因子违反平衡树的性质,需要对
		其进行旋转处理
		*/
		while (pParent)
		{
			// 更新双亲的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;
			// 更新后检测双亲的平衡因子
			if (0 == pParent->_bf)
				break;
			else if (1 == pParent->_bf || -1 == pParent->_bf)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因子为
				//为1 或者 -1 ,说明以双亲为根的二叉树
			 // 的高度增加了一层,因此需要继续向上调整
					pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,
				//需要对以pParent为根的树进行旋转处理
				if (2 == pParent->_bf)
				{
					// ...
				}
				else
				{
					// ...
				}
			}
		}
		return true;
	}
5.AVL树的旋转

1.右单旋
在这里插入图片描述
旋转后的图形:
在这里插入图片描述
在旋转的过程中,会有一下几个问题需要注意:
在这里插入图片描述

	void _RotateR(Node* pParent) {
		// pSubL: pParent的左孩子
		// pSubLR: pParent左孩子的右孩子,
		Node* pSubL = pParent->_pLeft;
		Node* pSubLR = pSubL->_pRight;
		// 60的左孩子是50
		pParent->_pLeft = pSubLR;
		// 50存在,更新亲双亲
		if (pSubLR)
			pSubLR->_pParent = pParent;
		// 60 作为 40的右孩子
		pSubL->_pRight = pParent;
		// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
		Node* pPParent = pParent->_pParent;
		// 更新60的双亲
		pParent->_pParent = pSubL;
		// 更新40的双亲
		pSubL->_pParent = pPParent;
		// 如果60是根节点,根新指向根节点的指针
			if (NULL == pPParent)
			{
				_pRoot = pSubL;
				pSubL->_pParent = NULL;
			}
			else
			{
				// 如果60是子树,可能是其双亲的左子树,也可能是右子树
				if (pPParent->_pLeft == pParent)
					pPParent->_pLeft = pSubL;
				else
					pPParent->_pRight = pSubL;
			}
		// 根据调整后的结构更新部分节点的平衡因子
		pParent->_bf = pSubL->_bf = 0;
	}

2.左单旋
在这里插入图片描述
旋转后图形:
在这里插入图片描述

void RotateL(Node* pParent)
	{
		Node* pSubR = pParent->_pRight;
		Node* pSubRL = pSubR->_pLeft;

		pParent->_pRight = pSubRL;
		if (pSubRL)
			pSubRL->_pParent = pParent;

		pSubR->_pLeft = pParent;
		Node* pPParent = pParent->_pParent;
		pParent->_pParent = pSubR;
		pSubR->_pParent = pPParent;

		if (nullptr == pPParent)
		{
			_pRoot = pSubR;
		}
		else
		{
			if (pParent == pPParent->_pLeft)
				pPParent->_pLeft = pSubR;
			else
				pPParent->_pRight = pSubR;
		}

		pParent->_bf = pSubR->_bf = 0;
	}

3.先左单旋,在右单旋
在这里插入图片描述
在这里插入图片描述
由上图可以看出,我们要插入的节点为75,如果直接以70那个节点进行旋转处理,不论怎么进行处理,都不可能满足AVL树,都有一个节点的平衡因子不满足。所以,我们先80这个节点进行左单旋,在以80这个节点进行右单旋。

注:代码:我们写代码直接调用单个旋转就行,但要注意传参时,判断是根据哪个节点旋转的。

4.先右单旋,在左单旋
在这里插入图片描述
在这里插入图片描述
由上图可以看出,我们要插入的节点为65,如果直接以60那个节点进行旋转处理,不论怎么进行处理,都不可能满足AVL树,都有一个节点的平衡因子不满足。所以,我们先60这个节点进行右单旋,在以60这个节点进行左单旋。

6.AVL树的印证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
// 注意:此处需要验证两个内容:
// 1. 每个节点的平衡因子是否计算正确(通过节点的子树高度差来与当前节点的平衡因子比较)
// 2. 每个节点的平衡因子的绝对值是否超过1
int _Height(Node* pRoot)
{
	if (nullptr == pRoot)
		return 0;
	// 计算pRoot左右子树的高度
	int leftHeight = _Height(pRoot->_pLeft);
	int rightHeight = _Height(pRoot->_pRight);
	// 返回左右子树中较高的子树高度+1
	return (leftHeight > rightHeight) ? (leftHeight + 1) : (rightHeight + 1);
}
bool _IsBalanceTree(Node* pRoot)
{
	// 空树也是AVL树
	if (nullptr == pRoot)
		return true;
	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(pRoot->_pLeft);
	int rightHeight = _Height(pRoot->_pRight);
	int diff = rightHeight - leftHeight;
	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))  //与根的bf不等,说明插入计算错误。
		return false;
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
}
6.AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即(log N)但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:
插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。
因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

7. 代码实现
#include <iostream>
using namespace std;


template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data = T())
	: _pLeft(nullptr)
	, _pRight(nullptr)
	, _pParent(nullptr)
	, _data(data)
	, _bf(0)
	{}

	AVLTreeNode<T>* _pLeft;
	AVLTreeNode<T>* _pRight;
	AVLTreeNode<T>* _pParent;
	T _data;
	int _bf;   // 节点的平衡因子
};



// AVL: 二叉搜索树 + 平衡因子的限制
template<class T>
class AVLTree
{
	typedef AVLTreeNode<T> Node;
public:
	AVLTree()
		: _pRoot(nullptr)
	{}

	bool Insert(const T& data)
	{
		// 先按照二叉搜索树的方式进行插入
		if (nullptr == _pRoot)
		{
			_pRoot = new Node(data);
			return true;
		}

		// 按照二叉搜索树特性:找待插入节点在树中的位置
		// 并保存其双亲
		Node* pCur = _pRoot;
		Node* pParent = nullptr;
		while (pCur)
		{
			pParent = pCur;
			if (data < pCur->_data)
				pCur = pCur->_pLeft;
			else if (data > pCur->_data)
				pCur = pCur->_pRight;
			else
				return false;
		}

		// 插入新节点
		pCur = new Node(data);
		if (data < pParent->_data)
			pParent->_pLeft = pCur;
		else
			pParent->_pRight = pCur;
		pCur->_pParent = pParent;

		while (pParent)
		{
			// 更新pParent的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;

			if (0 == pParent->_bf)
				break;
			else if (-1 == pParent->_bf || 1 == pParent->_bf)
			{
				pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// pParent->_bf: 2 || -2
				// pParent的节点失去平衡
				if (2 == pParent->_bf)
				{
					// 右子树高-->最后必须左单旋
					if (1 == pCur->_bf)
						RotateL(pParent);
					else
						RotateRL(pParent);
				}
				else
				{
					if (-1 == pCur->_bf)
						RotateR(pParent);
					else
						RotateLR(pParent);
				}

				break;
			}
		}
		
		return true;
	}

	void InOrder()
	{
		_InOrder(_pRoot);
	}

	Node* LeftMost()
	{
		if (nullptr == _pRoot)
			return nullptr;

		Node* pCur = _pRoot;
		while (pCur->_pLeft)
			pCur = pCur->_pLeft;

		return pCur;
	}

	Node* RightMost()
	{
		if (nullptr == _pRoot)
			return nullptr;

		Node* pCur = _pRoot;
		while (pCur->_pRight)
			pCur = pCur->_pRight;

		return pCur;
	}

	bool IsAVLTree()
	{
		return _IsAVLTree(_pRoot);
	}

private:
	bool _IsAVLTree(Node* pRoot)
	{
		if (nullptr == pRoot)
			return true;

		int leftHeight = _Height(pRoot->_pLeft);
		int rightHeight = _Height(pRoot->_pRight);

		if (abs(rightHeight - leftHeight) > 1 ||
			rightHeight - leftHeight != pRoot->_bf)
			return false;

		return _IsAVLTree(pRoot->_pLeft) && _IsAVLTree(pRoot->_pRight);
	}

	size_t _Height(Node* pRoot)
	{
		if (nullptr == pRoot)
			return 0;

		size_t leftHeight = _Height(pRoot->_pLeft);
		size_t rightHeight = _Height(pRoot->_pRight);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}


	void RotateR(Node* pParent)
	{
		Node* pSubL = pParent->_pLeft;
		Node* pSubLR = pSubL->_pRight;

		// 改变pParent和pSubL孩子的指向
		pParent->_pLeft = pSubLR;
		if (pSubLR)
			pSubLR->_pParent = pParent;

		pSubL->_pRight = pParent;

		// 更新pParent和pSubL的双亲
		Node* pPParent = pParent->_pParent;
		pParent->_pParent = pSubL;
		pSubL->_pParent = pPParent;

		// 更新原pParent双亲的左||右指针域指向
		if (nullptr == pPParent)
		{
			_pRoot = pSubL;
		}
		else
		{
			if (pParent == pPParent->_pLeft)
				pPParent->_pLeft = pSubL;
			else
				pPParent->_pRight = pSubL;
		}

		pParent->_bf = pSubL->_bf = 0;
	}

	void RotateL(Node* pParent)
	{
		Node* pSubR = pParent->_pRight;
		Node* pSubRL = pSubR->_pLeft;

		pParent->_pRight = pSubRL;
		if (pSubRL)
			pSubRL->_pParent = pParent;

		pSubR->_pLeft = pParent;
		Node* pPParent = pParent->_pParent;
		pParent->_pParent = pSubR;
		pSubR->_pParent = pPParent;

		if (nullptr == pPParent)
		{
			_pRoot = pSubR;
		}
		else
		{
			if (pParent == pPParent->_pLeft)
				pPParent->_pLeft = pSubR;
			else
				pPParent->_pRight = pSubR;
		}

		pParent->_bf = pSubR->_bf = 0;
	}

	void RotateRL(Node* pParent)
	{
		Node* pSubR = pParent->_pRight;
		Node* pSubRL = pSubR->_pLeft;
		int bf = pSubRL->_bf;

		RotateR(pParent->_pRight);
		RotateL(pParent);

		// 更新部分节点的平衡因子
		if (bf == -1)
			pSubR->_bf = 1;
		else if (bf == 1)
			pParent->_bf = -1;
	}

	void RotateLR(Node* pParent)
	{
		Node* pSubL = pParent->_pLeft;
		Node* pSubLR = pSubL->_pRight;
		int bf = pSubLR->_bf;

		RotateL(pParent->_pLeft);
		RotateR(pParent);
		if (-1 == bf)
			pParent->_bf = 1;
		else if (1 == bf)
			pSubL->_bf = -1;
	}

	void _InOrder(Node* pRoot)
	{
		if (pRoot)
		{
			_InOrder(pRoot->_pLeft);
			cout << pRoot->_data << " ";
			_InOrder(pRoot->_pRight);
		}
	}

private:
	Node* _pRoot;
};
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值