预训练模型之Huawei Nezha

本文介绍了华为的预训练模型Nezha,它结合了BERT等模型的优点。Nezha采用了相对位置编码,全词掩盖策略,混合精度训练以及LAMB优化器,提升了模型性能。文章旨在分享作者对Nezha的理解和使用经验。
摘要由CSDN通过智能技术生成

好久没更新blog了,这十几天一直忙着在腾讯适应工作环境,互联网大厂的生活确实是挺忙的,建议对互联网大厂怀有幻想的小伙伴争取在读书的时候去实习体验一下,再康康自己适不适合这种生活。

好了,废话不多说,笔者今天更新一遍关于预训练模型的短文,讲一下集预训练模型所长的huawei nezha。

预训练模型bert原理与应用,笔者在之前已经做了比较详细的介绍了,这里就直接将nezha相对于bert到底改了哪些点。

BERT的原理与应用

1.1 相对位置编码

Bert的position embedding是直接初始化一个embedding,然后通过预训练去学的,而nezha是通过下面这个三角函数公式设置一个position embedding,也就是position embedding。

使用选择固定的正弦函数的好处:主要是因为它可以使模型外推到比训练中遇到的序列长的序列长度。

1.2 全词掩盖(Whole Word Masking,wwm)

这个策略和bert_wwm以及百度的ernie没啥差别,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值