D. 又见01背包
有n个重量和价值分别为wi 和 vi 的 物品,从这些物品中选择总重量不超过 W
的物品,求所有挑选方案中物品价值总和的最大值。
1 <= n <=100
1 <= wi <= 10^7
1 <= vi <= 100
1 <= W <= 10^9
Input
多组测试数据。
每组测试数据第一行输入,n 和 W ,接下来有n行,每行输入两个数,代表第i个物品的wi 和 vi。
每组测试数据第一行输入,n 和 W ,接下来有n行,每行输入两个数,代表第i个物品的wi 和 vi。
Output
满足题意的最大价值,每组测试数据占一行。
Sample Input
4 5 2 3 1 2 3 4 2 2
Sample Output
7
#include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> using namespace std; int f[10005]= {0},c[1005],w[1005]; int main() { int n,v; while(~scanf("%d%d",&n,&v)) { int sum=0; for(int i=0; i<n; i++) { scanf("%d%d",&c[i],&w[i]); sum+=w[i]; //计算总价值 } memset(f,0x3f,sizeof(f)); f[0]=0; for(int i=0; i<n; i++) for(int j=sum; j>=w[i]; j--) f[j]=min(f[j],f[j-w[i]]+c[i]);//求相同价值的最小重量 for(int i=sum;i>=0;i--) //从最大价值开始找,找到第一个小于等于背包最大承受重量的价值,并输出价值。 { if(f[i]<=v) { printf("%d\n",i); break; } } } return 0; }