HNOI2008GT考试

这篇博客介绍了HNOI2008竞赛中的一道题目,涉及长度为n的字符串计数问题。题目要求计算不包含特定长度为m的子串s的字符串种类数。解题思路采用矩阵快速幂,可以通过KMP算法优化,但因限制条件可直接使用暴力求解法。
摘要由CSDN通过智能技术生成
题面

给定一个长度为m的字符串s,给定一个不大于 1 0 18 10^{18} 1018的正整数n,询问:长度为n且不包含子串s的字符串有多少种。

题解

从已经匹配上的位数考虑,f[i][j]表示i位的字符串,已经匹配上了j位的方案数,那么只需要设计一个m*m的矩阵就可以快速幂了。构造矩阵的的过程可以用KMP来O(M)做,但是M很小,可以直接暴力O(M^4),我就直接打的暴力。

#include<bits/stdc++.h>
using namespace std;
namespace fastio{
   
	template<typename tn> void read(tn &a){
   
	    tn x=0,f=1;char c=' ';
	    for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
	    for(;isdigit(c);c=getchar() ) x=x*10+c-'0';
	    a=x*f;
	}
	template<typename tn> void print(tn a){
   
	    if(a<0) putchar('-'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值