Python 在Coinbase上的应用

本文介绍如何使用Python连接Coinbase Pro,获取和分析加密货币的市场数据,添加移动平均线等指标,以及利用Plotly进行可视化。通过Python代码实现对加密货币历史数据的深度分析和市场趋势判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 在Coinbase上的应用

未标题-3

加密领域是试验不同技术的好方法。在本文中,我们将涵盖以下内容:

  • 如何从Coinbase Pro加载数据到Pandas数据框?
  • 如何转化和分析历史加密货币市场数据?
  • 如何添加简单移动平均线(SMA),指数移动平均线(EMA), MACD, MACD信号?
  • 如何使用Plotly和Python可视化加密货币市场数据?

本文只展示最相关的Python代码。

img

在文章的最后,我们将能够产生一个加密货币蜡烛棒图表,包括各种性能指标和市场趋势,像这样:

img

​ 最终结果——包含市场趋势的 OHLC 蜡烛图

第一步:连接Coinbase Pro

在cbpro库的帮助下,连接到Coinbase Pro是一条单线:

import cbpro
public_client = cbpro.PublicClient()
server_time = public_client.get_time()
# Server time does not comply to iso format, therefore slight modification of string needed
server_time_now = datetime.fromisoformat(server_time['iso'].replace('T', ' ', 1)[0:19])
print(server_time_now)

​ 启动公共客户端到 Coinbase Pro

我们将定义几个常量,因为我们想要限制想要分析的货币数量。让我们还可以选择一个基础货币,如美元或欧元,我们想要使用它们来显示每种货币的价值。

FIAT_CURRENCIES = ['EUR','USD']
MY_BASE_CURRENCY = FIAT_CURRENCIES[0]
MY_CRYPTO_CURRENCIES = ["BTC","ETH","LTC","ALGO","SHIB","MANA"]
GRANULARITIES = ['daily','60min','15min','1min']

​ 定义常量

第二步:最近24小时的负载统计

接下来,我们将回顾过去24小时内每种加密货币的基本统计数据。我们还将添加一个自定义列“表现”,它将显示报表期间从开始到结束的表现。代码的其余部分负责数字格式化。

currency_rows = []
for currency in MY_CRYPTO_CURRENCIES:
    data = public_client.get_product_24hr_stats(currency+'-'+MY_BASE_CURRENCY)
    currency_rows.append(data)
df_24hstats = pd.DataFrame(currency_rows, index = MY_CRYPTO_CURRENCIES)
df_24hstats['currency'] = df_24hstats.index
df_24hstats['open'] = df_24hstats['open'].astype(float)
df_24hstats['high'] = df_24hstats['high'].astype(float)
df_24hstats['low'] = df_24hstats['low'].astype(float)
df_24hstats['volume'] = df_24hstats['volume'].astype(float)
df_24hstats['last'] = df_24hstats['last'].astype(float)
df_24hstat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值