Machine Learning
QuiSuis-Je
这个作者很懒,什么都没留下…
展开
-
程序员初学机器学习的四种方式
转自:http://blog.jobbole.com/67621/转载 2014-05-14 16:21:51 · 1340 阅读 · 0 评论 -
畅所欲言第1期 - 从Viola&Jones的人脸检测说起
不少人认识我或者听说我的名字都是因为我过去做的关于人脸检测的工作,那么第一篇帖子就简单谈谈对我影响至深的这项工作的源起吧。2001年Paul Viola和Michael Jones在CVPR上发表了一篇震惊计算机视觉界的文章,Rapid object detection using a boosted cascade of simple features。相信几乎所有做计算机视觉的同学都读过至少是转载 2013-11-27 14:57:46 · 1092 阅读 · 0 评论 -
围猎深度学习——初创公司、科技巨头、研究机构在角力
转自:http://www.wumii.com/topbar/w0AGND3k深度学习是大数据下最热门的趋势之一,这项技术将对自然语言处理和图像识别等前沿领域提供支持。Gigaom.com网站整理了一个指南:深度学习领域的快速发展,鼓舞着越来越多在自然语言处理和图像识别等领域的初创企业去研究它。同时,包括Google、微软、Facebook和雅虎在内的科技巨头,在深度学习方面的投入也在转载 2013-11-27 11:47:25 · 1454 阅读 · 0 评论 -
高人对libsvm的经典总结(全面至极)
转自:http://www.ilovematlab.cn/thread-35262-1-1.htmlSVM相关资源汇总[matlab-libsvm-class-regress](by faruto) ----关于SVM的那点破事 by faruto 可以了,终于转载 2013-11-08 16:23:47 · 6102 阅读 · 1 评论 -
(lib)SVM 簡易入門
转自:http://www.csie.ntu.edu.tw/~piaip/docs/svm/piaip's Using (lib)SVM Tutorialpiaip 的 (lib)SVM 簡易入門piaip at csie dot ntu dot edu dot tw, Hung-Te LinFri Apr 18 15:04:53 CST 2003 $I转载 2013-11-08 16:01:46 · 1300 阅读 · 0 评论 -
机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点
1)C4.5算法:ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有:1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2)在树构造过程中进行剪枝3)转载 2013-11-21 13:50:22 · 1911 阅读 · 0 评论 -
videolectures 最受欢迎的机器学习视频
转自:http://blog.videolectures.net/100-most-popular-machine-learning-talks-at-videolectures-net/Enjoy this weeks list! 26971 views, 1:00:45, Gaussian Process Basics, Dav转载 2013-11-20 14:05:15 · 1262 阅读 · 0 评论 -
计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接
转自:http://blog.csdn.net/carson2005/article/details/6601109以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应用情况等等。打算从事这个行业或者刚入门的朋友可以多关注这些网站,多了解一些CV的转载 2013-11-19 11:43:40 · 1830 阅读 · 0 评论 -
12本北美比较常用的机器学习/自然语言处理/语音处理经典书籍
转载 2013-10-23 12:53:52 · 1202 阅读 · 0 评论 -
Machine Learning 书单
持续更新,请补充。除了以下推荐的书以外,出版在Foundations and Trends in Machine Learning上面的survey文章都值得一看。入门:Pattern Recognition And Machine LearningChristopher M. BishopMachine Learning : A Probabilist转载 2013-10-23 12:51:45 · 1597 阅读 · 0 评论 -
深度学习(Deep Learning,DL)的相关资料总结
有人认为DL是人工智能的一场革命,貌似很NB。要好好学学。0 第一人(提出者) 好像是由加拿大多伦多大学计算机系(Department of Computer Science ,University of Toronto) 的教授Geoffrey E. Hinton于2006年提出。 其个人网站是: http://www.转载 2013-10-24 15:59:55 · 1225 阅读 · 0 评论 -
一张图告诉你如何选择机器学习算法
网址:http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html转载 2013-10-24 10:54:55 · 2391 阅读 · 0 评论 -
机器学习经典论文/survey合集
转自:http://www.mlsurveys.com/Active LearningTwo Faces of Active Learning, Dasgupta, 2011Active Learning Literature Survey, Settles, 2010ApplicationsA Survey of Emerging转载 2013-11-29 09:55:41 · 1510 阅读 · 1 评论 -
斯坦福大学机器学习课程原始讲义 + 公开课视频
斯坦福大学机器学习课程原始讲义 + 公开课视频斯坦福大学机器学习课程原始讲义 本资源为斯坦福大学机器学习课程原始讲义,为Andrew Ng 所讲,共计20个PDF,基本涵盖了机器学习中一些重要的模型、算法、概念,此次一并压缩上传分享给大家,朋友们可以直接点击右边下载:斯坦福大学机器学习课程原始讲义.zip 。斯坦福大学机器学习公开课视频转载 2013-11-29 11:16:38 · 11496 阅读 · 2 评论 -
Deep Learning in NLP (一)词向量和语言模型
转自:http://licstar.net/archives/328这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享。其中必然有局限性,欢迎各种交流,随便拍。 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果。关于这个原因,引一条我比较赞同的转载 2014-03-17 16:23:45 · 1299 阅读 · 0 评论 -
机器学习算法之旅
转自:http://blog.jobbole.com/60809/本文由 伯乐在线 - 大飞 翻译自 machinelearningmastery。欢迎加入技术翻译小组。转载请参见文章末尾处的要求。在理解了我们需要解决的机器学习问题之后,我们可以思考一下我们需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮转载 2014-03-13 11:35:17 · 915 阅读 · 0 评论 -
隐马尔可夫模型(HMM)简介
转自:http://xiaofeng1982.blog.163.com/blog/static/315724582009824103618623/隐马尔可夫模型(HMM)简介请各位读者深吸一口气……呼……开始……(一)阿黄是大家敬爱的警官,他性格开朗,身体强壮,是大家心目中健康的典范。但是,近一个月来阿黄的身体状况转载 2014-01-25 16:59:30 · 1190 阅读 · 0 评论 -
机器学习的最佳入门学习资源
转自:http://blog.jobbole.com/56256/本文由 伯乐在线 - programmer_lin 翻译自 Jason Brownlee。欢迎加入技术翻译小组。转载请参见文章末尾处的要求。这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。转载 2014-01-22 09:54:09 · 1059 阅读 · 0 评论 -
常见面试之机器学习算法思想简单梳理
转自:http://www.chinakdd.com/article-oyU85v018dQL0Iu.html前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为转载 2013-11-18 15:39:54 · 1191 阅读 · 0 评论 -
经典的机器学习方面源代码库
原网址:http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html今天给大家介绍一下经典的开源机器学习软件:编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matla转载 2014-01-03 13:59:09 · 2501 阅读 · 0 评论 -
深度学习读书笔记之RBM
转自:http://blog.csdn.net/mytestmy/article/details/9150213声明:1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献。2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详转载 2013-12-18 09:31:05 · 1748 阅读 · 1 评论 -
Deep Learning 的Matlab工具箱
转自:http://www.wumii.com/topbar/FIXFKeyMDeepLearnToolbox看起来是一个硕士生的毕业论文内容。不得不感叹大牛的学生水平就是高啊。这个工具箱已经公开在了 github 网站上:https://github.com/rasmusbergpalm/DeepLearnToolbox这位就是工具箱的作者。(转载 2013-11-29 15:02:09 · 4256 阅读 · 0 评论 -
深度学习Deep Learning介绍
转自:http://suanfazu.com/discussion/28/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0deep-learning%E4%BB%8B%E7%BB%8D深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。深度学习的概念转载 2013-11-29 11:12:51 · 1439 阅读 · 0 评论 -
DL的相关资源(持续补充)
1.http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_Readings有中文版2.http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning跟1一样都跟Andrew Ng相关,这个是在线ML的opencla原创 2013-11-26 16:17:37 · 1252 阅读 · 0 评论 -
Deep Learning 101
转自:http://markus.com/deep-learning-101/Deep learning has become something of a buzzword in recent years with the explosion of 'big data', 'data science', and their derivatives mentioned in the med转载 2013-11-29 11:27:22 · 1062 阅读 · 0 评论 -
几个提供大数据分析服务以及机器学习API的公司
Everstring:http://www.everstring.com/团队很强大。------------AlchemyAPI:http://www.alchemyapi.com/deep learning、NLP等的API,demo也不错。-----------Ersatz:http://www.ersatz1.com/deep learning解转载 2013-10-11 22:45:04 · 2024 阅读 · 1 评论 -
20+ Natural Language Processing APIs
http://blog.mashape.com/post/48946187179/20-natural-language-processing-apisNatural Language Processing, or NLP, is a field of computer science, artificial intelligence, and linguistics co转载 2013-10-11 22:42:10 · 1532 阅读 · 0 评论 -
my list of cool machine learning books
http://matpalm.com/blog/2010/08/06/my-list-of-cool-machine-learning-books/brain of mat kelceymy list of cool machine learning booksAugust 06, 2010 at 06:35 PM | 9 Commentsfor转载 2013-10-11 22:23:04 · 1372 阅读 · 0 评论 -
狄利克雷过程(dirichlet process )的五种理解
狄利克雷过程(dirichlet process )是目前变参数学习(non parameter)非常流行的一个理论,很多的工作都是基于这个理论来进行的,如HDP(hierarchical dirichlet process)。下面我们谈谈dirichlet process的五种角度来理解它。第一种:原始定义:假设存在在度量空间\Theta上的分布H和一个参数\alpha,如果对于转载 2013-08-07 16:52:40 · 1248 阅读 · 0 评论 -
隐马尔可夫模型(HMM)简介
隐马尔可夫模型(HMM)简介请各位读者深吸一口气……呼……开始……(一)阿黄是大家敬爱的警官,他性格开朗,身体强壮,是大家心目中健康的典范。但是,近一个月来阿黄的身体状况出现异常:情绪失控的状况时有发生。有时候忍不住放声大笑,有时候有时候愁眉不展,有时候老泪纵横,有时候勃然大怒……如此变化无常的情绪失控是由什么引起的呢?据警队转载 2013-08-07 16:49:42 · 838 阅读 · 0 评论 -
机器学习中的相似性度量
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:1. 欧氏距离2. 曼哈顿距离3. 切比雪夫距离4. 闵可夫斯转载 2013-07-05 09:13:33 · 550 阅读 · 0 评论 -
Dirichlet Process and Hierarchical Dirichlet Process
最近在看Dirichlet分布以及Dirichlet过程,因为最近感觉Dirichlet过程在聚类以及一些贝叶斯模型上使用很多。参考了很多资料,其中这篇博客介绍HDP算是比较清楚的了,原文链接是 http://hi.baidu.com/zentopus/item/46a622f5ef13e4c5a835a28e另外关于Dirichlet Process还有以下文献可以参考:转载 2013-07-03 10:05:02 · 892 阅读 · 0 评论 -
Monte Carlo Approximation
Here I will talk about the Monte Carlo Approximation Methods for machine learning problems. The content is greatly aided by Amos and Mackey.1. Why we need Monte CarloUsually, in machine learning转载 2013-07-04 10:59:16 · 1404 阅读 · 0 评论 -
Simple Introduction to Dirichlet Process
Dirichlet Process(DP)是一个很重要的统计模型,其可以看做是Dirichlet分布的一种在连续空间的推广过程。在统计学习中,DP尤其是其变形有很多重要应用,是非参贝叶斯学习的重要方法。不过目前缺乏对于这样一个模型的入门级的介绍,本文将会介绍如何从Dirichlet分布演变到Dirichlet Process,从而帮助大家更容易地踏入这个领域。其中也会有很多疏漏,请读者指正。转载 2013-07-04 10:30:06 · 604 阅读 · 0 评论 -
An Introduction to Variational Methods
这一系列的文章,用以对Variational Methods(变分法),做一个粗浅的入门介绍,主要的描述和依据来源于Bishop的书《pattern recognition and machine learning》 和 Jordan的书《graphical models exponential families and variational inference》,有兴趣的同学可以自行深入研转载 2013-07-04 10:28:57 · 1182 阅读 · 0 评论 -
Little about Optimization
Optimization is quite important and useful in many fields, no one can express the complex mathematical concepts in such a short article. However here I present some basic knowledge about optimization转载 2013-07-04 10:58:38 · 681 阅读 · 0 评论 -
Basic Concepts for Learning from Data
When we talk about learning from data, we talk about models, algorithms, learning and inference procedures. Here I present my understanding about this term 'Learning From Data' in the context of machi转载 2013-07-04 10:57:43 · 682 阅读 · 0 评论 -
Deep Learning深度学习相关入门文章汇摘
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出转载 2013-07-03 16:41:32 · 1750 阅读 · 0 评论 -
Simple Introduction to Dirichlet Process
转自:http://hi.baidu.com/zentopus/item/2f10ecc3fc35597dced4f88bDirichlet Process(DP)是一个很重要的统计模型,其可以看做是Dirichlet分布的一种在连续空间的推广过程。在统计学习中,DP尤其是其变形有很多重要应用,是非参贝叶斯学习的重要方法。不过目前缺乏对于这样一个模型的入门级的介绍,本文将会介绍如何从Diric转载 2013-07-03 11:25:01 · 650 阅读 · 0 评论 -
机器学习理论与实战
前面的近20篇博文已经牵扯到很多机器学习算法咯,已经吊足了胃口,决定从后面开始正式系统的学习机器学习理论,并尝试进入实战阶段,涵盖:加州理工(caltech)的 Yaser Abu-Mostafa教授的机器学习,偏重于传统统计理论斯坦福大学(Staford U)的Andrew Ng教授的机器学习,偏重于实用,直观理解多伦多大学(Tronto U)的Geoffery Hint转载 2013-08-07 16:19:03 · 4313 阅读 · 0 评论