自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(94)
  • 资源 (2)
  • 问答 (3)
  • 收藏
  • 关注

原创 登山第二十三梯:有序点云平面快速分割——35Hz帧速前进

本文提出了一种基于凝聚分层聚类的实时平面提取算法,适用于Kinect等设备采集的有序点云。算法首先将点云划分为不重叠节点构建图结构,通过节点合并检测平面区域,最终采用像素级区域增长优化边界。实验表明,该算法能以>35Hz处理640×480点云,速度显著优于现有方法,同时保持相当的精度。创新点包括:利用有序点云特性实现对数线性复杂度;无需逐点法线估计;通过图初始化预处理提升效率。在模拟和真实场景测试中均表现出良好的鲁棒性和实时性。未来计划扩展至无序点云及其他几何基元检测。

2025-05-29 15:11:50 738

原创 2.6 点云数据存储格式——小结

格式的数据组织方式,包括数据的存储顺序、数据类型的定义等,了解其如何影响数据的读取与写入效率。在属性支持方面,分析每种格式能够支持的点云属性,如坐标、颜色、法线、强度等,以及对不同属性的存储方式与精度。:若需要在不同软件和平台间交换数据,应选择兼容性好的格式,如.ply;随着点云技术的不断发展,未来点云数据存储格式将朝着更加标准化、高效化、智能化的方向演进,以满足日益增长的应用需求。:使用标准化格式(如.las、.ply)可降低开发成本,自定义的.bin 格式虽然灵活,但开发和维护成本较高。

2025-05-08 15:48:51 54

原创 2.5 点云数据存储格式——大型点云传输格式

若点云还包含颜色信息(RGB),可能在坐标数据之后,依次存储每个点的 R、G、B 值(每个颜色通道通常用 1 字节的 uchar 类型存储),此时文件结构变为先存储 N 个点的坐标数据,再存储 N 个点的颜色数据。在点云数据领域,以 “.bin” 为后缀的文件通常指二进制格式的点云数据存储文件。这种格式没有统一的标准规范,不同的软件、框架或应用场景下,.bin 文件的具体数据结构和存储规则差异较大,通常需要根据开发者自定义的协议或特定软件的要求进行解析和读写。元数据之后再存储实际的点云数据。

2025-05-08 15:47:22 53

原创 2.4 点云数据存储格式——轻量文本型存储格式

.xyz 格式没有严格统一的标准规范,除了基本的坐标存储格式外,对于额外属性的添加、数据分隔符的使用等方面没有强制要求,这可能导致不同软件生成的.xyz 文件在格式上存在细微差异,在数据交换和共享过程中可能出现兼容性问题,需要进行额外的格式转换和处理。:由于其文本性质,用户可以直接在文本编辑器中对.xyz 文件进行编辑操作,如手动修改点的坐标值、删除或添加点等,这对于小规模点云数据的微调非常方便,例如在制作简单的三维模型原型时,可以快速调整点的位置来改变模型形状。

2025-05-08 15:44:01 54

原创 2.3 点云数据存储格式——LiDAR专用型点云存储格式

这使得不同来源的三维数据可以方便地进行交换和共享,例如 FARO、Trimble 等品牌的激光扫描仪采集的数据,都可以以 E57 格式进行存储和传输,有效打破了数据孤岛,提高了数据的利用效率。同时,丰富的元数据为数据的分析和处理提供了全面的背景信息。通过文件头的版本控制、数据块的标识和校验机制,以及元数据的详细描述,能够准确记录和传递数据信息,避免数据丢失或错误,为后续的数据处理和分析提供可靠的基础。数据块是 E57 文件存储实际数据的部分,可包含多种类型的数据,如点云数据、图像数据、网格数据等。

2025-05-08 15:39:44 62

原创 2.2 点云数据存储格式——通用型点云存储格式

定义每个字段的数据类型,使用单个字符表示。:尽管二进制格式的 PLY 文件在存储效率上有一定提升,但与一些专门为大规模数据设计的格式(如用于 LiDAR 数据的 LAS/LAZ 格式)相比,在处理超大规模点云数据时,无论是存储占用空间还是读写速度,都可能无法满足实时性要求。:指定点云的视点信息,格式为 “VIEWPOINT x y z qx qy qz qw”,分别表示视点的三维坐标和四元数旋转信息,默认值为 “VIEWPOINT 0 0 0 1 0 0 0” ,表示没有旋转和平移。

2025-05-08 15:33:04 50

原创 2.1 点云数据存储格式——引言

例如,在自动驾驶场景中,车辆需要实时处理大量的点云数据以做出决策,此时高效的存储格式能够大大缩短数据读取与处理的时间,提升系统的响应速度。在复杂场景下,如大规模城市三维建模中,不同类型的点云数据需要进行整合与分析,合适的存储格式能够更好地满足这种复杂需求,确保数据的有效利用。当前,不同领域对 3D 点云数据的需求呈现出多样化的特点。这些不同的需求对存储格式提出了不同的要求,亟需对典型的存储格式进行系统性梳理,明确其技术特征与适用边界,为各领域的点云数据管理提供科学的选型参考。

2025-05-08 15:22:21 860

原创 ROS第十三梯:RViz+Marker——自定义几何形状可视化

在ROS(Robot Operating System)中,Marker是一种用于在RViz(Robot Visualization)中显示自定义几何形状和注释的工具。mesh_resource:当 type 为 MESH_RESOURCE 时的网格资源路径。解决方案:将代码中frame_id由“/my_frame”修改为“my_frame”。text:当 type 为 TEXT_VIEW_FACING 时的文本内容。mesh_use_embedded_materials:是否使用嵌入式材质。

2025-05-07 19:37:33 71

原创 1.8 点云数据获取方式——小结

在典型场景的应用中,激光扫描仪凭借其全光照适应能力,无论是在阳光明媚的户外,还是光线昏暗的室内,都能稳定工作,成为工业测绘、文物保护等场景的首选。激光扫描仪由于其复杂的技术和精密的制造工艺,成本通常在万元 - 百万元级,对于一些预算有限的项目来说,可能是一道难以跨越的门槛。深度相机成本亲民,在百元 - 千元级,非常适合消费级产品的集成,为智能家居设备的智能化升级提供了可能。多视图重建虽然精度相对较低,在厘米 - 米级范围,但它的灵活性和低成本,使其在对精度要求不那么极致的电商建模等场景中得到广泛应用。

2025-04-29 20:38:33 109

原创 1.7 点云数据获取方式——视觉SLAM

VSLAM 通过相机序列实时估计传感器位姿并重建环境结构,生成的三维点云不仅为增强现实(AR)、自动驾驶、机器人导航等领域提供空间基准,还推动了从稀疏特征点到稠密场景建模的技术演进。通过图优化算法(如 g2o、Ceres 等),最小化重投影误差等目标函数,调整相机位姿和地图点的位置,从而得到更精确的全局一致的轨迹和地图。根据应用需求和传感器类型,可生成稀疏点云地图(适用于快速定位与导航,计算量小)、半稠密点云地图(包含场景中主要结构和边缘信息)或稠密点云地图(精确还原场景细节)。

2025-04-29 20:36:56 120

原创 1.6 点云数据获取方式——单目相机多视图几何

给定一个不受约束的图像集合,可能是小的(1 张图像)或大的(> 1000 张图像),我们首先使用高效的图像检索技术计算稀疏场景图,给定冻结的 MASt3R 的每张图像特征。早期的研究主要基于简单的几何投影原理,尝试通过手工测量图像中的特征点,利用三角测量方法估算物体的空间位置。其中, (u,v) 为图像平面上的像素坐标, (X,Y,Z) 为三维空间点在相机坐标系下的坐标, fx 和 fy 分别为相机在 x 和 y 方向的焦距, (u0 ,v0 ) 为图像平面的主点坐标, Z 为三维点到相机光心的距离。

2025-04-29 20:34:33 597

原创 1.5 点云数据获取方式——双目立体相机

同时,智能化程度不断提升,部分相机内置 AI 芯片,集成 “People Detection” 等算法,可实时识别人体和物体,如 SICK 推出的 Visionary - B Two 户外双目相机,在工程机械和农业机械领域实现了精准的人员识别和避障功能。1878 年伊士曼・柯达发明胶卷后,立体摄影相机开始使用胶卷拍摄,这些早期相机通过两个平行镜头同时拍摄,获取具有视差的两幅图像,实现简单的三维场景记录,但受限于光学材料与成像技术,图像质量和深度测量精度较低。其中,B 为相机基线距离,f为镜头焦距。

2025-04-29 20:30:43 430

原创 1.4 点云数据获取方式——结构光相机

与此同时,利用相机从特定角度捕捉变形后的图案,基于三角测量原理,通过精确计算相机与投影仪之间的几何关系以及图案的变形程度,就能准确计算出物体表面各点的三维坐标,从而获取高精度的三维点云数据。在高端制造业中,对于微小零部件的尺寸测量和缺陷检测,结构光相机能够提供极其精确的数据,确保产品质量符合严格的标准。时序编码:这类相机通过序列投射多幅不同图案,如格雷码、相移条纹等,通过对这一系列图案的时间序列进行解码分析,就能够获取亚像素级精度的三维信息,其单点误差能够控制在≤0.1mm,展现出极高的测量精度。

2025-04-29 20:27:21 490

原创 1.3 点云数据获取方式——ToF相机

Kinect 2.0 的成功,不仅证明了 ToF 技术在消费电子领域的可行性和巨大潜力,也为后续相关产品的研发和应用奠定了基础,激发了更多厂商对 ToF 技术在消费级市场的探索热情。例如,在制造过程中,需要使用高精度的时钟源和先进的集成电路工艺来保证时序的准确性,这使得 dToF 相机的生产成本居高不下,限制了其在一些对成本敏感的消费级市场中的应用。例如,半导体激光器的出现,为 ToF 系统提供了高功率、高效率的光源,而高精度的光电探测器则能够更准确地检测反射光信号,从而提高了距离测量的精度。

2025-04-29 20:23:34 419

原创 1.2 点云数据获取方式——激光雷达

通过精确测量激光脉冲从发射到接收的时间间隔(Time of Flight,ToF),结合光在空气中的传播速度(约为 299792458m/s ),利用公式d=c×Δt/2(d表示目标物体的距离,c为光速,Δt是激光脉冲往返的时间差),就能计算出目标物体与激光雷达之间的距离,从而。激光雷达本质上是一种光探测与测距设备,通过向目标物体发射激光脉冲,然后接收从物体表面反射回来的激光信号,依据特定算法计算出目标物体的相关参数,从而实现对周围环境的感知与测绘。2. 三维激光扫描技术崛起(1990-2000 年)

2025-04-29 20:19:13 437

原创 1.1 点云数据获取方式——引言

点云数据是指能够描述外部场景、对象表面的三维空间位置,并具有相关属性的点集,其每个离散点通常包括三维空间位置(x,y,z)以及强度、颜色等属性信息。大量分布的离散点集能够清晰而直接地描绘场景、对象的3D形状,通过不同属性进行点云赋色渲染从而提升其3D可视化效果。

2025-04-29 20:15:37 454

原创 〇 开篇序言

在科技飞速发展的今天,三维数据的获取与处理已成为众多领域突破创新的关键。而点云,作为三维空间信息的直观载体,正以其独特的魅力与强大的功能,掀起一场关于空间认知与数据处理的深刻变革。从自动驾驶汽车精准感知周围环境,到无人机测绘绘制出高精度的地形地貌;从工业检测实现对零部件的精密测量,到虚拟现实构建出沉浸式的虚拟世界,点云技术无处不在,重塑着我们与现实世界交互的方式。

2025-04-29 20:12:48 67

原创 ROS第十二梯:ros-noetic和Anaconda联合使用

可以看到上面libffi.7.so链接到了libffi.so.8.1.2上,这是因为我当前python版本为3.8.20,在该库中,就会出现兼容老版本问题,即出现libffi.7.so链接到libffi.so.8.1.2。sys.path.append(“/home/【用户名】/.conda/envs/【虚拟环境名】/lib/python3.x/site-packages”)/home/【用户名】/.conda/envs/【虚拟环境名】/bin/python。我是使用的方案2,亲测有效,解决了上述问题。

2025-04-23 20:51:24 470

原创 ROS第十一梯:ROS+VSCode+C+++服务通信

在 ROS(机器人操作系统)中,.srv文件用于定义服务(Service)的接口,是实现节点间请求 - 响应式通信的核心组件。Python 需要调用的中间文件(.../工作空间/devel/lib/python3/dist-packages/包名/srv)// if (argc!ROS_INFO("服务器接收到的请求数据为:num1 = %d, num2 = %d",num1, num2);C++ 需要调用的中间文件(.../工作空间/devel/include/包名/xxx.h)

2025-04-23 20:46:27 39

原创 机器人仿真:外部三维模型导入仿真环境及显示

除了使用Gazebo搭建仿真环境,还可以导入外部模型,如通过solidworks等软件设计的精细3D模型。第一步:创建gazebo模型文件model.sdf和model.config,并将其放置在同一个文件夹pallet中,同时,将stl文件也放置在该文件夹中。注意,由于外部导入模型的尺寸在gazebo中显示,通常会放大1000倍,因此,需要设置scale标签,将模型缩小1000倍。第四步:启动gazebo,在insert界面选择pallet添加到world中,并保存为world文件供调用。

2025-04-23 09:55:34 319

原创 机器人仿真:kinect信息仿真以及显示

Kinect 相机是微软开发的一款革命性深度感知设备,通过融合多模态传感器和算法,实现了从体感交互到工业级 3D 建模的广泛应用。ToF(V2):发射高频红外脉冲,通过测量光往返时间计算距离(d=c×Δt/2),支持 0.5-4.5 米检测范围,抗干扰能力显著提升。深度传感器:结构光(V1):通过红外发射器投射散斑图案,红外相机捕捉变形后的数据,利用三角测量计算深度(精度 ±1-3 厘米)。RGB 摄像头:Kinect V2 采用 1080P 彩色摄像头,支持环境纹理捕捉(如场景识别、物体分类)。

2025-04-23 09:53:09 122

原创 机器人仿真:相机信息仿真及显示

除了激光雷达以外,机器人常用的视觉传感器还包括相机,相机图像能够获取真实世界的真实颜色和纹理信息,能够被用于进行目标检测、分割和追踪。xacro与Gazebo。程序Launch文件。

2025-04-23 09:47:55 189

原创 机器人仿真:激光雷达信息仿真及显示

关于URDF(Xacro)、Rviz 和 Gazebo 三者的关系,前面已有阐述: URDF 用于创建机器人模型、Rviz 可以显示机器人感知到的环境信息,Gazebo 用于仿真,可以模拟外界环境,以及机器人的一些传感器,如何在 Gazebo 中运行这些传感器,并显示这些传感器的数据(机器人的视角)呢?本节主要介绍的重点就是将三者结合:通过 Gazebo 模拟机器人的传感器,然后在 Rviz 中显示这些传感器感知到的数据。-- 雷达仿真的 xacro 文件 -->-- 组合小车底盘与传感器 -->

2025-04-21 08:37:19 146

原创 机器人仿真:Gazebo仿真环境搭建

到目前为止,我们已经可以将机器人模型显示在 Gazebo 之中了,但是当前默认情况下,在 Gazebo 中机器人模型是在 empty world 中,并没有类似于房间、家具、道路、树木... 之类的仿真物,如何在 Gazebo 中创建仿真环境呢?点击: 左上角 file ---> Save (保存路径功能包下的: models)-- 将 Urdf 文件的内容加载到参数服务器 -->-- 在 gazebo 中显示机器人模型 -->方式1: 直接添加内置组件创建仿真环境。-- 启动 gazebo -->

2025-04-21 08:33:25 347

原创 机器人仿真:xacro与Gazebo

在 ROS 中,Xacro(XML Macro Language)是一种用于简化 URDF(机器人描述文件)的宏语言,通过参数化、模块化和代码复用,让复杂机器人模型的定义更加简洁高效。结合 Gazebo 仿真时,Xacro 能显著提升 URDF 模型的可读性和维护性,尤其适合定义包含物理属性、传感器、控制器的复杂机器人。组合底盘、摄像头与雷达的 Xacro 文件。

2025-04-13 11:33:17 446

原创 机器人仿真:URDF与Gazebo

较之于 rviz,gazebo在集成 URDF 时,需要做些许修改,比如:必须添加 collision 碰撞属性相关参数、必须添加 inertial 惯性矩阵相关参数,另外,如果直接移植 Rviz 中机器人的颜色设置是没有显示的,颜色设置也必须做相应的变更。原则上,除了 base_footprint 外,机器人的每个刚体部分都需要设置惯性矩阵,且惯性矩阵必须经计算得出,如果随意定义刚体部分的惯性矩阵,那么可能会导致机器人在 Gazebo 中出现抖动,移动等现象。-urdf 加载的是 urdf 文件。

2025-04-13 11:28:54 206

原创 机器人仿真:URDF优化——xacro

问题2:URDF中的部分内容是高度重复的,驱动轮与支撑轮的设计实现,不同轮子只是部分参数不同,形状、颜色、翻转量都是一致的,在实际应用中,构建复杂的机器人模型时,更是易于出现高度重复的设计,按照一般的编程语言设计到重复代码应该考虑封装。Xacro可以声明变量,可以通过数学运算求解,使用流程控制控制执行顺序,还可以通过类似函数的实现,封装固定的逻辑,将逻辑中需要的可变的数据以参数的方式暴露初期,从而提高代码复用率以及程序的安全性。然后再编写一个组合文件,组合底盘、摄像头与雷达。

2025-04-13 11:26:03 380

原创 机器人仿真:URDF语法joint

Urdf中的joint标签用于描述机器人关节的运动学和动力学属性,还可以指定关节运动的安全极限,机器人的两个部件(分别称之为parent link与child link)以“关节”的形式相连接,不同的关节有不同的运动形式:旋转、华东、固定、旋转速度、旋转角度限制等等。(注意,我的ros版本是noetic,若你的电脑是其他版本,则将该名称替换成你的即可)Parent link:父级连杆的名字,是这个link在机器人结构树中的名字。Child link:子级连杆的名字,是这个link在机器人结构树中的名字。

2025-04-13 11:20:58 109

原创 机器人仿真:URDF语法robot和link

urdf中的link标签用于描述机器人某个部件(也即刚体部分)的外观和物理属性,比如:机器人底座、轮子、激光雷达、摄像头等等。每一个不见都对应一个link,在link标签内,可以设计该部件的形状、尺寸、颜色、惯性矩阵、碰撞参数等一系列属性。urdf中为了保证xml语法的完整性,使用了robot标签作为根标签,所有其他标签都必须包含在robot标签内,在该标签内可以通过name属性设置机器人模型的名称。geometry标签主要设置对象的尺寸信息,比如上述代码使用的是box,因此其尺寸包含长宽高。

2025-04-13 11:17:43 110

原创 机器人仿真:URDF+RVIZ

例如:可以显示机器人模型,可以无需编程就能表达激光测距仪(LRF)传感器中的传感器到障碍物的距离,RealSense、Kinect或Xtion等三维传感器的点云数据,从相机获取的图像等。URDF:是Unified Robot Description Format的首字母缩写,翻译为统一(标准化)机器人描述格式,可以以一种XML的方式描述机器人的部分结构,比如底盘、摄像头、激光雷达、机械臂以及不同关节的自由度等等。该文件可以被C++内置的解释器转换为可视化的机器人模板,是ROS中实现机器人仿真的重要组件。

2025-04-13 11:13:56 254

原创 ROS第十梯:ROS+VSCode+Python+C++利用launch自启动节点

手撕roslaunch

2025-04-13 09:21:54 191 1

原创 传感器篇(二)——激光雷达

激光雷达(Light Detection and Ranging,LiDAR)是一种通过发射激光束并测量反射光来获取目标物体距离、速度、角度等信息的主动式遥感技术。它在自动驾驶、测绘、机器人等领域有着广泛应用。 激光雷达本质上是一种光探测与测距设备,通过向目标物体发射激光脉冲,然后接收从物体表面反射回来的激光信号,依据特定算法计算出目标物体的相关参数,从而实现对周围环境的感知与测绘。

2025-04-10 21:50:45 1783

原创 登山第二十二梯:多边形对比——看看咱两差距有多大

建筑物提取评估技术的标准化是遥感、摄影测量和计算机视觉领域尚未解决的问题。在本文中,我们提出了一个暂定名称为 “PoLiS metric” 的指标来比较两个多边形。PoLiS 度量是满足三角形不等式的正、定和对称函数。它考虑了面之间的形状和精度差异,易于应用,并且不需要阈值。我们通过一个例子表明,两个多边形之间的 PoLiS 度量相对于微小的平移、旋转和缩放变化几乎呈线性变化。

2025-04-10 15:21:08 1560

原创 无序抓取系列(四)

在杂乱场景中快速、稳健地抓取物体是机器人技术的重要组成部分。目前大多数工作都采用整个观测点云进行 6-Dof 抓取生成,忽略了从全局语义中挖掘的指导信息,从而限制了高质量的抓取生成和实时性能。在这项工作中,我们表明广泛使用的热力图在 6-Dof 抓取生成的效率方面被低估了。因此,我们提出了一种有效的局部抓取生成器,结合抓取热力图作为指导,以全局到局部语义到点的方式进行推理。

2025-03-26 22:32:48 181

原创 登山第二十一梯:点云补全——零样本、跨激光分布的“泥瓦匠”

现有的点云补全方法通常依赖于预定义的合成训练数据集,在应用于分布外的实际扫描时会遇到重大挑战。为了克服这一限制,我们引入了一个称为 GenPC 的零样本补全框架,旨在通过利用明确的 3D 生成先验来重建高质量的真实世界扫描。我们的主要见解是,最近的前馈 3D 生成模型,在广泛的互联网规模数据上进行训练,已经证明了在零样本场景下从单视图图像执行 3D 生成的能力。为了利用这一点来完成,我们首先开发了一个深度提示模块,该模块通过利用深度图像作为垫脚石,将部分点云与图像到 3D 生成模型联系起来。

2025-03-26 21:42:37 957

原创 无序抓取系列(三)

本文重点研究了6-DoF抓取检测在尺度不平衡情况下的特征学习问题,并提出了一种新的方法,以解决小尺度样本处理的困难问题。提出了一种多尺度圆柱体分组 (MsCG) 模块,通过结合多尺度圆柱体特征和全局上下文来增强局部几何表示。此外,该文设计了一种尺度平衡学习(SBL)损失和对象平衡采样(OBS)策略,其中SBL通过先验权重放大了尺度低频样本的梯度,而OBS则借助辅助分割网络在小尺度目标上捕获了更多的点。它们分别缓解了训练和推理中抓取量表分布不均的影响。

2025-03-20 20:42:47 71

原创 登山第二十梯:无人机实时自主探索——我是一只小小小鸟

自主探索是无人机 (UAV) 各种应用的基本问题。最近,基于 LiDAR 的探索因其能够生成大规模环境的高精度点云地图而受到广泛关注。虽然点云本身就为导航提供了信息,但许多现有的勘探方法仍然依赖于额外的(通常是昂贵的)环境表示。这种依赖源于两个主要原因:需要边界检测或信息增益计算,这通常取决于内存密集型占用网格地图,以及直接在点云上进行路径规划的高计算复杂性,主要是由于昂贵的碰撞检查。

2025-03-19 20:50:49 1243

原创 点云深度学习系列:PVRCNN——point-voxel融合的分割模型

作者提出了一种新颖的高性能 3D 对象检测框架,名为 PointVoxel-RCNN (PV-RCNN),用于从点云中准确检测 3D 对象。提出的方法深度集成了 3D 体素卷积神经网络 (CNN) 和基于 PointNet 的集合抽象,以学习更多的判别性点云特征。它利用了 3D 体素 CNN 的高效学习和高质量建议以及基于 PointNet 的网络的灵活感受野。具体来说,所提出的框架通过新颖的体素集抽象模块将带有 3D 体素 CNN 的 3D 场景总结为一小组关键点,以节省后续计算并编码代表性场景特征。

2025-03-12 18:55:08 1061

原创 登山第十九梯:实时点云压缩——量变质不变

LiDAR 因其能够提供准确的环境结构信息而被广泛用于自主机器人。然而,点云的大尺寸给数据存储和传输方面带来了挑战。在本文中,我们提出了一种用于资源受限机器人应用的新型点云压缩和传输框架,称为 RCPCC。我们迭代拟合具有相似范围值的点云表面,并通过它们的空间关系消除冗余。然后,我们使用形状自适应 DCT (SADCT) 来变换不拟合点,并通过量化变换后的系数来减少数据量。我们以 QoE 为优化目标,设计了一种自适应码率控制策略,以控制传输的点云质量。

2025-03-12 18:31:45 1085

原创 登山第十八梯:具有泛化能力的3D检测——我行你也行

在本文中,文章提出了一种方法来增强基于 LiDAR 的 3D 目标检测的泛化能力,使探测器对点云密度的变化更加鲁棒。文章引入了基于置信度的下采样,以根据置信度分数模拟各种密度下的点云。文章还采用了学生-教师框架和文章提出的对齐损失,以保持低级内容的一致性和高级关系的一致性。广泛的实验表明,与其他基线相比,文章的方法表现出更好的泛化能力。

2025-02-17 14:51:55 966

近十年的恶劣环境下激光数据质量增强算法相关论文集合

概要:近十年的恶劣环境下激光数据质量增强算法相关论文集合,涉及雨雪尘等恶劣天气的处理相关方案。以及一些相关的公开数据集介绍。 适用人群:自动驾驶、移动机器人以及激光点云算法工程师

2025-03-12

从2015-2024年的3D点云无序抓取位姿生成大合集

上传了43篇基于3D点云的无序抓取位姿生成文献,涵盖了从无序抓取起源到2024年最新的抓取技术论文,同时也包含了一些成熟、可落地的方案。

2024-10-23

快速聚类算法函数C++代码

该代码基于论文FEC: Fast Euclidean Clustering for Point Cloud Segmentation进行复现,效果与论文描述基本一致。 代码中基于pcl构建了kdtree,里面用了Eigen的数据结构,因此需要pcl库和Eigen库作为支撑。 代码是从本人私人项目库里面剥离出来的,只要库齐全,便可以使用。

2023-06-06

ArcEngine ppt

2016-08-22

Engine9.3 许可证

2016-08-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除