谷歌、微软、Meta?谁才是 Python 最大的金主?

你知道维护 Python 这个大规模的开源项目,每年需要多少资金吗?

答案是:约 200 万美元!

PSF(Python 软件基金会)在 2022 年 6 月发布了 2021 的年度报告,其中披露了以下这份支出明细(单位:千美元):

总支出金额 196 万美元,基本与 2020 年持平,不知道这个数额有没有超出你的预期呢?

另外,在收入方面,2021 年总收入为 271 万,因此年度净结余为 75 万。(PS.加上之前的资产,目前基金会还有 506 万~)

PSF 是一个独立的非营利性机构, 致力于促进 Python 语言的发展与推广、促进 Python 国际化多元化社区的繁荣。虽然不以营利为目标,但不可否认的是,它也有着一笔不菲的金钱诉求:有更多的收入,才能实现更大的目标,才能发挥出基金会的更大价值。

比如,尽管 PSF 在 2001 年就成立了,但是,直到 20 年后,它才拥有了第一位全职的开发者!也就是说,长久以来,基金会的其他成员及核心开发者们都只是兼职或志愿者!

将来若有更多收入的话,PSF 很有可能会再次扩员全职的开发者,必然能创造出更多的可能性!


(2021年在“Program Service”单项上的支出)

既然 PSF 开销不小,诉求也大,那么,它目前的资金是怎么来的呢?

PSF 主要的资金来源是大大小小的金主所赞助,比如,JetBrains(Pycharm 出自这家公司)恰巧正在为 PSF 举行年终筹款。通过以下链接可以 7 折购买 Pycharm Pro,全部销售额将捐献给 Python。

JetBrains 活动(2022.11.22结束):https://blog.jetbrains.com/zh-hans/pycharm/2022/11/jetbrains-pycharm-python/

PSF 将赞助者们分成了七类:远景的(Visionary)、持续的(Sustainability)、保持的(Maintaining)、贡献的(Contributing)、支持的(Supporting)、伙伴的(Partner)、联合的(Associate)。

标题中的谷歌、微软、Meta 都是 PSF 最高级别的远景赞助者。但是,谁才是 Python 最大的金主呢?

下面,我将根据相关新闻资讯,梳理大家比较感兴趣的这三家公司对 PSF 的赞助。

原文链接

谷歌从 2010 年起成为 PSF 的赞助者,在 2021 年 2 月成为首个远景赞助者(赞助 35 万美元,以及其它资源)。资金主要用于提升 Python 生态的供应链安全,资源主要为 Google Cloud 的产品:

  • 开发用于检测 PyPI 恶意软件的产品
  • 改善 Python 的基础设施工具与服务
  • 2021 年资助 CPython 一名常驻开发者(Developer-in-Residence),他全职分析 CPython 项目的维护优先级,帮助解决积压的工作
  • 赞助谷歌云基础设施,比如用于 Pypi 的云存储,谷歌云公开数据集(Google Cloud Public Datasets)支持 Pypi 的下载统计、项目元数据查询分析

除此之外,谷歌还参与赞助了 Python 的各类活动,比如,2022 年 10 月为期 5 天的核心开发者 sprint 活动

(2022年核心开发者 Sprint 活动合影)

微软从 2006 年起成为 PSF 的赞助者,在 2021 年 4 月成为远景赞助者(赞助 15 万美元,以及其它资源)。

  • 资助打包工作组,助力改善 PyPI 和打包生态
  • 包括 Guido van Rossum 在内的 6 人团队,兼职为 Faster CPython 项目作贡献
  • 雇用了 Python 生态系统中关键开源项目的几个核心贡献者和维护者
  • 通过 VS Code 相关插件、pyright、Azure 相关服务等,为 Python 社区作贡献

其中比较瞩目的是包括 Python 之父在内的豪华开发团队,可以通过微软发布的《A Team at Microsoft is Helping Make Python Faster》 了解这支团队以及正在做的事。(正在开发 3.12,可查阅《Python 3.12 Goals》)

除此之外,微软也是各类活动的主要赞助方之一,比如 2022 年 10 月的一场 Hacktoberfest ,比如 2019 年的核心开发者 sprint 活动

(2019年核心开发者 Sprint 活动合影)

Meta(即 Facebook)在 2022 年 3 月成为远景赞助者(赞助 30 万美元)。

  • 资助 2022 年的 Developer-in-Residence
  • 通过 Cinder 解释器给上游贡献,提升 CPython 解释器性能
  • 维护和支撑 PyPI,管理 Python 知识产权,提供托管 Python 发行版的基础设施

同样地,Meta 也是 Python 各类活动的主要赞助方之一,比如,2016 年 9 月的第一期核心开发者sprint 活动,这为之后每年的惯例活动开了一个好头!

(2016年核心开发者 Sprint 活动合影)

另外,值得一提的是,在 2019 年 12 月,陈和扎克伯格基金会(Chan Zuckerberg Initiative)连同 Mozilla 一起给 PSF 赞助了 40.7 万美元,而扎克伯格正是 Meta 的掌舵人。

这几家科技巨头对 Python 的赞助有一个明显的共同点,即有不少资金用于 Python 基础设施的维护。这里只给大家分享几个关键的数据(出自年度报告,统计维度:2021 年):

  • 1100 亿次 Python 发行版下载量
  • 1265 亿次 PyPI 软件包下载量(36.9 万个软件包)
  • 以上这么多下载量需要 324 PB 数据传输,或 82.2 Gbps 带宽,并且是 24x7x365

如此大数量级的服务,其实现的困难程度可想而知,而这仅是冰山一角。

回到前文的话题:谁才是 Python 最大的金主呢?

如果你只看它们成为远景赞助者时单次的资金量的话,容易得出一个答案,但是,这没有意义!

因为,每个赞助方对 Python 的赞助都是全方位的长期持续性的(比如谷歌的云服务、微软的人力投入、对 CPython 及开源生态的贡献、每年各式各样的活动、宣传与推广),很多内容根本无法直接通过金钱来衡量!

另外,需要说明的是,本文为了话题性及便利性,主要介绍了三家巨头企业成为 PSF 远景赞助者的相关信息,并不代表其它赞助者的贡献不值一提。

所有赞助者、志愿者、开发者都有一个共同的愿景:那就是希望 Python 语言、Python 生态、Python 社区变得越来越好!

大家一起自豪地做着一些力所能及的贡献,这才是十分值得称道的事,你觉得呢?

首发于 Python猫 ,如需转载,请联系作者原文链接

知乎:Python猫

博客园:豌豆花下猫

掘金:豌豆花下猫

CSDN:Python猫

<think>好的,用户之前问过关于大模型生成并执行代码的流程和应用场景,现在他想知道有哪些具体的工具可以实现这个功能。我需要整理出一些常见的AI代码生成工具,并且这些工具支持沙箱执行。 首先,得考虑用户可能的背景。他可能是个开发者,或者是对自动化工具感兴趣的人,想找现成的解决方案来集成到自己的工作流中。也有可能是在做研究,需要评估不同工具的特点。 用户的需求是找到能生成代码并发送到沙箱执行的工具,所以需要列出这些工具,并说明它们的特点、应用场景和沙箱机制。同时,用户可能关心安全性、支持的编程语言、是否开源或商业产品等因素。 接下来,我得回忆一下常见的工具。比如OpenAI的Codex,也就是GitHub Copilot,不过它是否支持沙箱执行呢?可能需要进一步确认。Replit的Ghostwriter,这个可能是在线IDE,自带执行环境。还有Hugging Face的代码生成模型,他们可能有沙箱环境。此外,CodeSandbox、Google Colab这些虽然不是直接生成代码,但可以作为沙箱环境配合AI使用。 需要注意区分代码生成工具和单纯的沙箱执行环境。用户需要的是两者结合的工具,即AI生成代码后自动在沙箱中运行。比如Codex生成的代码可能需要用户自己复制到Colab执行,而像Replit的Ghostwriter可能直接在他们的平台上生成并执行。 还有一些开源项目,比如E2B,提供安全的沙箱环境,可以集成到AI应用中。还有微软的AutoGen,虽然主要是多智能体协作,但可能支持代码执行。 需要检查每个工具是否同时具备代码生成和沙箱执行的功能。例如,Code Llama是Meta的模型,生成代码后需要外部沙箱,而Hugging Face的Inference API可能允许部署模型并执行代码在受控环境中。 另外,用户可能对安全性非常关注,所以需要强调各个工具的沙箱机制,比如Docker容器、资源限制、网络隔离等。 最后,总结的时候要比较各个工具的优缺点,帮助用户根据需求选择。比如开源方案更灵活,而商业产品可能有更好的支持。</think>以下是支持**AI生成代码并自动发送到沙箱执行**的典型工具与平台,按类型分类说明: --- ### 一、商业级开发工具 1. **GitHub Copilot (基于OpenAI Codex)** - **功能**:直接在IDE(如VS Code)中生成代码片段,通过**本地沙箱**或**云环境**测试执行 - **沙箱机制**:执行时依赖用户本地解释器,或通过GitHub Codespaces云容器隔离 - **场景**:Python/JS/Java等全栈开发,支持单元测试生成 2. **Replit Ghostwriter** - **特点**:在浏览器IDE中生成完整项目代码,内置**Docker沙箱**实时执行 - **示例**:输入“用Flask创建REST API”,生成代码后自动启动$http://localhost:3000$测试 - **安全控制**:限制网络访问权限,内存隔离 3. **Amazon CodeWhisperer** - **集成环境**:生成代码后推送至AWS Cloud9沙箱,通过IAM策略控制资源访问 - **优势**:直接调用AWS API(如S3、Lambda)时自动附加权限验证 --- ### 二、开源框架 1. **E2B** - **架构**:专为AI设计的开源沙箱,支持Python/Node.js等 - **技术栈**:基于Firecracker微虚拟机,启动时间<100ms - **代码示例**: ```python from e2b import Sandbox # 生成AI代码 ai_code = "print(sum([i**2 for i in range(10)]))" # 在沙箱中执行 with Sandbox() as sandbox: process = sandbox.process.start(ai_code) print(process.output) # 输出285 ``` 2. **Hugging Face Inference API** - **流程**:调用CodeGen模型生成代码,通过**TEE可信执行环境**运行 - **安全特性**:加密内存、禁用危险系统调用(如`os.system`) 3. **Meta Code Llama + Firejail** - **组合方案**:用Code Llama生成代码,通过Firejail沙箱(Linux命名空间隔离)执行 - **配置命令**: ```bash firejail --noprofile --net=none python generated_code.py ``` --- ### 三、科研与实验平台 1. **Google Colab Pro** - **AI集成**:结合PaLM 2生成Python代码,直接在云端GPU沙箱中运行 - **限制**:禁止文件系统写入、网络端口开放需申请 2. **CodeSandbox AI** - **工作流**: 1. 输入“创建React计数器组件” 2. 生成JSX代码并启动临时容器 3. 实时预览$http://sandbox-id.csb.app$ - **隔离策略**:每个沙箱分配独立Linux cgroup 3. **Wolfram Mathematica + Codex插件** - **数学计算场景**:将自然语言转换为Wolfram代码,在安全内核执行 - **示例**:输入“解方程$x^2 + 2x - 3 = 0$”,生成: ```wolfram Solve[x^2 + 2x - 3 == 0, x] ``` 输出:$\{\{x \to -3\}, \{x \to 1\}\}$ --- ### 四、安全防护对比 | 工具 | 隔离层级 | 危险操作拦截能力 | 资源限制 | |--------------------|------------------|---------------------|---------------| | **E2B** | 微虚拟机 | 拦截系统调用 | CPU/内存/磁盘 | | **Replit** | Docker容器 | 过滤敏感库导入 | 内存≤2GB | | **Firejail** | Linux命名空间 | 黑名单模式 | 需手动配置 | | **AWS Cloud9** | IAM策略 | API调用鉴权 | 按账户配额 | --- ### 五、选型建议 - **企业级开发**:优先选择GitHub Copilot + Codespaces - **教育/实验**:使用CodeSandbox AI或Google Colab - **高安全需求**:部署E2B开源方案,自定义安全策略 - **数学/符号计算**:Wolfram Mathematica与AI插件结合 注:所有工具需配合内容审核机制,防止生成恶意代码。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值