Apache Sqoop 介绍
Apache Sqoop 是在 Hadoop 生态体系和 RDBMS 体系之间传送数据的一种工具
Sqoop 工作机制是将导入或导出命令翻译成 mapreduce 程序来实现。在翻译出的 mapreduce 中主要是对 inputformat 和 outputformat 进行定制。
-
Hadoop 生态系统包括: HDFS、 Hive、 Hbase 等
-
RDBMS 体系包括: Mysql、 Oracle、 DB2 等
Sqoop 可以理解为: “SQL 到 Hadoop 和 Hadoop 到 SQL”
-
Import: 数据导入。 RDBMS----->Hadoop
-
Export: 数据导出。 Hadoop---->RDBMS
Sqoop 导入
下面语法用于将数据导入 HDFS
$ sqoop import (generic-args) (import-args)
1. 全量导入 mysql 表数据到 HDFS
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \ // 使用 ip 地址
--username root \
--password 1234 \
--delete-target-dir \
--target-dir /sqoopresult \ // 用来指定导出数据存放至 HDFS 的目录
--fields-terminated-by '\t' \ // 指定分隔符
--table emp --m 1
2. 全量导入 mysql 表数据到 Hive
方式一:先复制表结构到 hive 中再导入数据
将关系型数据的表结构复制到 hive 中
bin/sqoop create-hive-table \
--connect jdbc:mysql://node01:3306/sqoopdb \
--table emp_add \ // mysql 中的数据库 sqoopdb 中的表
--username root \
--password 1234 \
--hive-table test.emp_add_sp // hive 中新建的表名称
从关系数据库导入文件到 hive 中
bin/sqoop import \
--connect jdbc:mysql://node01:3306/sqoopdb \
--username root \
--password 1234 \
--table emp_add \
--hive-table test.emp_add_sp \
--hive-import \
--m 1
方式二:直接复制表结构数据到 hive 中
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--table emp_conn \
--hive-import \
--m 1 \
--hive-database test;
3. 导入表数据子集(where 过滤)
bin/sqoop import \
--connect jdbc:mysql://node01:3306/sqoopdb \
--username root \
--password 1234 \
--where "city ='sec-bad'" \ // where 可以指定从关系数据库导入数据时的查询条件
--target-dir /wherequery \
--table emp_add --m 1
4. 导入表数据子集(query 查询)
【注意】
- 使用 query sql 语句来进行查找不能加参数——table;
- 并且必须要添加 where 条件;
- 并且 where 条件后面必须滴啊一个 $CONDITIONS 这个字符串;
- 并且这个 sql 语句继续用单引号,不能用双引号
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--target-dir /wherequery12 \
--query 'select id,name,deg from emp WHERE id>1203 and $CONDITIONS' \
--split-by id \ // 通常配合 -m 10 参数使用,用于指定根据哪个字段进行划分并启动多少个 maptask
--fields-terminated-by '\t' \
--m 2
5. 增量导入
--check-column (col)
用来指定一些列,这些列在增量导入时用来检查这些数据是否作为增量数据进行导入,和关系型数据库中的自增字段及时间戳类似。
--incremental (mode)
append:追加,比如对大于 last-value 指定的值之后的记录进行追加导入。
lastmodified:最后的修改时间,追加 last-value 指定的日期之后的记录
--last-value (value)
指定自从上次导入后列的最大值(大于该指定的值),也可以自己设定某一值
5.1 Append 模式增量导入
先将我们之前的数据导入
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--target-dir /appendresult \
--table emp --m 1
然后在 mysql 的 emp 中插入 2 条增量数据
insert into `userdb`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) values ('1206', 'allen',
'admin', '30000', 'tp');
insert into `userdb`.`emp` (`id`, `name`, `deg`, `salary`, `dept`) values ('1207', 'woon',
'admin', '40000', 'tp');
实现增量的导入
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root --password 1234 \
--table emp --m 1 \
--target-dir /appendresult \
--incremental append \
--check-column id \
--last-value 1205
5.2 Lastmodified 模式导入
首先创建一个 customer 表,指定一个时间戳字段:
create table customertest(id int,name varchar(20),last_mod timestamp default current_timestamp on update current_timestamp);
插入记录
insert into customertest(id,name) values(1,'neil');
insert into customertest(id,name) values(2,'jack');
insert into customertest(id,name) values(3,'martin');
insert into customertest(id,name) values(4,'tony');
insert into customertest(id,name) values(5,'eric');
将数据导入 hdfs
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--target-dir /lastmodifiedresult \
--table customertest --m 1
再插入一条数据
insert into customertest(id,name) values(6,'james')
使用 incremental 的方式进行增量的导入
bin/sqoop import \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--table customertest \
--target-dir /lastmodifiedresult \
--check-column last_mod \
--incremental lastmodified \
--last-value "2019-05-28 18:42:06" \
--m 1 \
--append
Sqoop 导出
将数据从 Hadoop 生态体系导出到 RDBMS 数据库前,目标表必须存在于目标数据库中
export 有三种模式:
- 默认操作是从将文件中的数据使用 INSERT 语句插入到表中。
- 更新模式: Sqoop 将生成 UPDATE 替换数据库中现有记录的语句。
- 调用模式: Sqoop 将为每条记录创建一个存储过程调用
以下是 export 命令语法:
$ sqoop export (generic-args) (export-args)
1. 默认模式导出 HDFS 数据到 mysql
默认情况下, sqoop export 将每行输入记录转换成一条 INSERT 语句,添加到目标数据库表中。如果数据库中的表具有约束条件(例如,其值必须唯一的主键列)并且已有数据存在,则必须注意避免插入违反这些约束条件的记录。如果INSERT 语句失败,导出过程将失败。
此模式主要用于将记录导出到可以接收这些结果的空表中。 通常用于全表数据导出。
1.1 准备 HDFS 数据
在 HDFS 文件系统中“/emp/”目录的下创建一个文件 emp_data.txt:
1201,gopal,manager,50000,TP
1202,manisha,preader,50000,TP
1203,kalil,php dev,30000,AC
1204,prasanth,php dev,30000,AC
1205,kranthi,admin,20000,TP
1206,satishp,grpdes,20000,GR
1.2 手动创建 mysql 中的目标表
mysql> USE userdb;
mysql> CREATE TABLE employee (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20),
deg VARCHAR(20),
salary INT,
dept VARCHAR(10));
1.3 执行导出命令
bin/sqoop export \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--table employee \
--export-dir /emp/emp_data
1.4 相关配置参数
- --input-fields-terminated-by '\t' 指定文件中的分隔符
- --columns 选择列并控制它们的排序。当导出数据文件和目标表字段列顺序完全一致的时候可以不写。否则以逗号为间隔选择和排列各个列。
- --export-dir 导出目录,在执行导出的时候,必须指定这个参数,同时需要具备--table 或--call 参数两者之一
- --table 是指的导出数据库当中对应的表
- --call 是指的某个存储过程
- --input-null-string --input-null-non-string 如果没有指定第一个参数,对于字符串类型的列来说,“NULL”这个字符串就回被翻译成空值,如果没有使用第二个参数,无论是“NULL”字符串还是说空字符串也好,对于非字符串类型的字段来说,这两个类型的空串都会被翻译成空值。
2. 更新导出(updateonly 模式)
2.1 参数说明
- -- update-key,更新标识,即根据某个字段进行更新,例如 id,可以指定多个更新标识的字段, 多个字段之间用逗号分隔。
- -- updatemod, 指定 updateonly(默认模式),仅仅更新已存在的数据记录,不会插入新纪录
2.2 准备 HDFS 数据
在 HDFS “/updateonly_1/”目录的下创建一个文件 updateonly_1.txt:
1201,gopal,manager,50000
1202,manisha,preader,50000
1203,kalil,php dev,30000
2.3 手动创建 mysql 中的目标表
mysql> USE userdb;
mysql> CREATE TABLE updateonly (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20),
deg VARCHAR(20),
salary INT);
2.4 先执行全部导出操作
bin/sqoop export \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--table updateonly \
--export-dir /updateonly_1/
2.5 新增一个文件
创建一个文件:updateonly_2.txt 。 修改了前三条数据并且新增了一条记录。上传至 /updateonly_2/目录下:
1201,gopal,manager,1212
1202,manisha,preader,1313
1203,kalil,php dev,1414
1204,allen,java,1515
2.6 执行更新导出
bin/sqoop export \
--connect jdbc:mysql://node01:3306/userdb \
--username root --password 1234 \
--table updateonly \
--export-dir /updateonly_2/ \
--update-key id \
--update-mode updateonly
3. 更新导出(allowinsert 模式)
3.1 参数说明
- -- update-key,更新标识,即根据某个字段进行更新,例如 id,可以指定多个更新标识的字段, 多个字段之间用逗号分隔。
- -- updatemode, 指定 allowinsert,更新已存在的数据记录, 同时插入新纪录。实质上是一个 insert & update 的操作
3.2 准备 HDFS 数据
在 HDFS “/allowinsert_1/”目录的下创建一个文件 allowinsert_1.txt:
1201,gopal,manager,50000
1202,manisha,preader,50000
1203,kalil,php dev,30000
3.3 手动创建 mysql 中的目标表
mysql> USE userdb;
mysql> CREATE TABLE allowinsert (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20),
deg VARCHAR(20),
salary INT);
3.4 先全部导出
bin/sqoop export \
--connect jdbc:mysql://node01:3306/userdb \
--username root \
--password 1234 \
--table allowinsert \
--export-dir /allowinsert_1/
3.5 新增一个文件
创建一个文件:allowinsert_2.txt 。 修改了前三条数据并且新增了一条记录。上传至 /allowinsert_2/目录下:
1201,gopal,manager,1212
1202,manisha,preader,1313
1203,kalil,php dev,1414
1204,allen,java,1515
3.6 执行更新导出
bin/sqoop export \
--connect jdbc:mysql://node01:3306/userdb \
--username root --password 1234 \
--table allowinsert \
--export-dir /allowinsert_2/ \
--update-key id \
--update-mode allowinsert
Sqoop job 作业
1. job 语法
$ sqoop job (generic-args) (job-args)
[-- [subtool-name] (subtool-args)]
$ sqoop-job (generic-args) (job-args)
[-- [subtool-name] (subtool-args)]
2. 创建 job
在这里,我们创建一个名为 itcastjob,这可以从 RDBMS 表的数据导入到HDFS 作业
bin/sqoop job --create itcastjob -- import --connect jdbc:mysql://node0
1:3306/userdb \
--username root \
--password hadoop \
--target-dir /sqoopresult333 \
--table emp --m 1
【注意】import 前面要空格,不要和 -- 连在一起写
3. 验证 job
‘--list’ 参数是用来验证保存的作业。下面的命令用来验证保存 Sqoop 作业的列表
bin/sqoop job --list
4. 检查 job
‘--show’ 参数用于检查或验证特定的工作,及其详细信息。以下命令和样本输出用来验证一个名为 itcastjob 的作业
bin/sqoop job --show itcastjob
5. 执行 job
‘--exec’ 选项用于执行保存的作业。下面的命令用于执行保存的作业称为 itcastjob
bin/sqoop job --exec itcastjob
6. 免密执行 job
sqoop 在创建 job 时,使用--password-file 参数,可以避免输入 mysql 密码,如果使用--password 将出现警告,并且每次都要手动输入密码才能执行 job,sqoop规定密码文件必须存放在 HDFS 上,并且权限必须是 400。
并且检查 sqoop 的 sqoop-site.xml 是否存在如下配置:
<property>
<name>sqoop.metastore.client.record.password</name>
<value>true</value>
<description>If true, allow saved passwords in the metastore.</description>
</property>