二叉树的基本操作

数据结构(实验C语言版)

二叉树的基本操作

一、实验目的
  1. 掌握二叉树链表的结构和二叉树的建立过程
  2. 掌握用递归方法实现二叉树遍历的操作
二、实验环境

硬件环境要求:
PC机(单机)
使用的软件名称、版本号以及模块:
VS2010或Visual C++ 6.0或Win-TC等。

三、实验内容

1、编写一个程序实现二叉树的各种运算,并完成如下功能:
(1)输出二叉树b;(b为下图所示的二叉树)
(2)输出H节点的左、右孩子节点值;
(3)输出二叉树b的深度;
(4)输出二叉树b的节点个数;
(5)输出二叉树b的叶子节点个数;
(6)释放二叉树b。

在这里插入图片描述

四、实验要求
1、用 VS2010 工具创建文件或程序,输入代码后,进行编译运行或在控制台 执行。
2、观看程序运行结果,并根据结果进行思考,对程序进行修改和总结。
在这里插入图片描述

源代码

#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
	ElemType data;				//数据元素
	struct node *lchild;		//指向左孩子
	struct node *rchild;		//指向右孩子
} BTNode;
 void CreateBTNode(BTNode *&b, char *str);
 void DispBTNode(BTNode *b);
 BTNode *FindNode(BTNode *b, ElemType x);
 BTNode *LchildNode(BTNode *p);
 BTNode *RchildNode(BTNode *p);
 int BTNodeDepth(BTNode *b);
 
 int Nodes(BTNode *b);
 int LeafNodes(BTNode *b);
 void DestroyBTNode(BTNode *&b);
void CreateBTNode(BTNode *&b, char *str)		//由str串创建二叉链
{
	BTNode *St[MaxSize], *p = NULL;
	int top = -1, k, j = 0;
	char ch;
	b = NULL;				//建立的二叉树初始时为空
	ch = str[j];
	while (ch != '\0')	//str未扫描完时循环
	{
		switch (ch)
		{
		case '(':top++; St[top] = p; k = 1; break;		//为左节点
		case ')':top--; break;
		case ',':k = 2; break;                      	//为右节点
		default:p = (BTNode *)malloc(sizeof(BTNode));
			p->data = ch; p->lchild = p->rchild = NULL;
			if (b == NULL)                    //p指向二叉树的根节点
				b = p;
			else  							//已建立二叉树根节点
			{
				switch (k)
				{
				case 1:St[top]->lchild = p; break;
				case 2:St[top]->rchild = p; break;
				}
			}
		}
		j++;
		ch = str[j];
	}
}

void DispBTNode(BTNode *b)	//以括号表示法输出二叉树
{
	if (b != NULL)
	{
		printf("%c", b->data);
		if (b->lchild != NULL || b->rchild != NULL)
		{
			printf("(");
			DispBTNode(b->lchild);
			if (b->rchild != NULL) printf(",");
			DispBTNode(b->rchild);
			printf(")");
		}
	}
}
BTNode *FindNode(BTNode *b, ElemType x)	//返回data域为x的节点指针
{
	BTNode *p;
	if (b == NULL)
		return NULL;
	else if (b->data == x)
		return b;
	else
	{
		p = FindNode(b->lchild, x);
		if (p != NULL)
			return p;
		else
			return FindNode(b->rchild, x);
	}
}
BTNode *LchildNode(BTNode *p)	//返回*p节点的左孩子节点指针
{
	return p->lchild;
}
BTNode *RchildNode(BTNode *p)	//返回*p节点的右孩子节点指针
{
	return p->rchild;
}
int BTNodeDepth(BTNode *b)	//求二叉树b的深度
{
	int lchilddep, rchilddep;
	if (b == NULL)
		return(0); 							//空树的高度为0
	else
	{
		lchilddep = BTNodeDepth(b->lchild);	//求左子树的高度为lchilddep
		rchilddep = BTNodeDepth(b->rchild);	//求右子树的高度为rchilddep
		return (lchilddep>rchilddep) ? (lchilddep + 1) : (rchilddep + 1);
	}
}


int Nodes(BTNode *b)	//求二叉树b的节点个数
{
	int num1, num2;
	if (b == NULL)
		return 0;
	else if (b->lchild == NULL && b->rchild == NULL)
		return 1;
	else
	{
		num1 = Nodes(b->lchild);
		num2 = Nodes(b->rchild);
		return (num1 + num2 + 1);
	}
}
int LeafNodes(BTNode *b)	//求二叉树b的叶子节点个数
{
	int num1, num2;
	if (b == NULL)
		return 0;
	else if (b->lchild == NULL && b->rchild == NULL)
		return 1;
	else
	{
		num1 = LeafNodes(b->lchild);
		num2 = LeafNodes(b->rchild);
		return (num1 + num2);
	}
}
void DestroyBTNode(BTNode *&b)   //摧毁树
{
	if (b != NULL)
	{
		DestroyBTNode(b->lchild);
		DestroyBTNode(b->rchild);
		free(b);
	}
}
int main()
{
	BTNode *b, *p, *lp, *rp;;
	CreateBTNode(b, "A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
	printf("二叉树的基本运算如下:\n");
	printf("  (1)输出二叉树:"); DispBTNode(b); printf("\n");
	printf("  (2)H节点:");
	p = FindNode(b, 'H');
	if (p != NULL)
	{
		lp = LchildNode(p);
		if (lp != NULL)
			printf("左孩子为%c ", lp->data);
		else
			printf("无左孩子 ");
		rp = RchildNode(p);
		if (rp != NULL)
			printf("右孩子为%c", rp->data);
		else
			printf("无右孩子 ");
	}
	printf("\n");
	printf("  (3)二叉树b的深度:%d\n", BTNodeDepth(b));
	printf("  (4)二叉树b的节点个数:%d\n", Nodes(b));
	printf("  (5)二叉树b的叶子节点个数:%d\n", LeafNodes(b));
	printf("  (6)释放二叉树b\n");
	DestroyBTNode(b);
	return 0;
}


二叉树是一种非常重要的数据结构,它的基本操作包括创建、销毁、遍历、查找等。下面是二叉树基本操作实现方法: 1. 创建二叉树:通过前序遍历的数组构建二叉树,其中 '#' 表示空节点。具体实现方法可以参考引用中的 BinaryTreeCreate 函数。 2. 销毁二叉树:遍历二叉树,依次释放每个节点的内存空间。具体实现方法可以参考引用中的 BinaryTreeDestory 函数。 3. 遍历二叉树二叉树的遍历包括前序遍历、中序遍历、后序遍历和层序遍历。具体实现方法可以参考引用中的 BinaryTreePrevOrder、BinaryTreeInOrder、BinaryTreePostOrder 和 BinaryTreeLevelOrder 函数。 4. 查找二叉树节点:在二叉树中查找值为 x 的节点,具体实现方法可以参考引用中的 BinaryTreeFind 函数。 5. 计算二叉树节点个数:计算二叉树中节点的个数,具体实现方法可以参考引用[2]中的 BinaryTreeSize 函数。 6. 计算二叉树叶子节点个数:计算二叉树中叶子节点的个数,具体实现方法可以参考引用中的 BinaryTreeLeafSize 函数。 7. 计算二叉树第 k 层节点个数:计算二叉树中第 k 层节点的个数,具体实现方法可以参考引用中的 BinaryTreeLevelKSize 函数。 8. 判断二叉树是否是完全二叉树:判断二叉树是否是完全二叉树,具体实现方法可以参考引用中的 BinaryTreeComplete 函数。 9. 计算二叉树的深度:计算二叉树的深度,具体实现方法可以参考引用中的 BinaryTreeDeep 函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chj65

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值