libsvm使用心得

本文详细介绍了如何使用Libsvm进行分类任务,包括数据格式、数据预处理、选用RBF核函数、参数调优、训练模型以及模型验证。通过交叉验证选择最佳参数C与g,并展示了使用Python接口的可能性。
摘要由CSDN通过智能技术生成

Libsvm使用心得

首先下载LibsvmPythonGnuplot

l         libsvm的主页http://www.csie.ntu.edu.tw/~cjlin/libsvm/上下载libsvm (我自己用2.86版本)

l         python的主页http://www.python.org下载 python (我自己用2.5版本)

l         gnuplot的主页http://www.gnuplot.info/下载gnuplot  (我用4.0版本)

LIBSVM 使用的一般步骤是:

1)按照LIBSVM软件包所要求的格式准备数据集;                                    

2)对数据进行简单的缩放操作;                                   

3)首要考虑选用RBF 核函数;

4)采用交叉验证选择最佳参数Cg

5)采用最佳参数Cg 对整个训练集进行训练获取支持向量机模型;

6)利用获取的模型进行测试与预测。

1LIBSVM使用的数据格式

    该软件使用的训练数据和检验数据文件格式如下:

[label] [index1]:[value1] [index2]:[value2] ...

[label] [index1]:[value1] [index2]:[value2] ...

一行一条记录数据,如:

+1 1:0.708 2:1 3:1 4:-0.320 5:-0.105 6:-1

这里(x,y)à((0.708,1,1, -0.320, -0.105, -1), +1)

label 或说是class, 就是你要分类的种类,通常是一些整数。

index 是有順序的索引,通常是连续的整数。

value 就是用来 train 的数据,通常是一堆实数。

 

2)对数据进行简单的缩放操作

    扫描数据. 因为原始数据可能范围过大或过小, svmscale可以先将数据重新scale (縮放) 到适当范围使训练与预测速度更快。

 

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值