SPM:Spatial Pyramid Matching for Recognizing Natural Scene Categories 空间金字塔匹配

SPM(Spatial Pyramid Matching)是一种改进的图像识别算法,通过在不同分辨率上统计特征点分布来保留局部信息。它解决了BOF(Bag Of Features)丢失图像局部细节的问题。算法主要包括Pyramid Match Kernels和Spatial Matching Scheme两部分,使用SIFT特征检测、KMeans聚类构建词典,并通过多尺度的直方图匹配计算图像的相似度。SPM通过连接各尺度的直方图特征形成分类的特征向量。
摘要由CSDN通过智能技术生成

    SPM即Spatial Pyramid Matching,是一种利用空间金字塔进行图像匹配、识别、分类的算法。SPM是BOF(Bag Of Features)的改进,因为BOF是在整张图像中计算特征点的分布特征,进而生成全局直方图,所以会丢失图像的局部/细节信息,无法对图像进行精确地识别。为了克服BOF的固有缺点,作者提出了SPM算法,它是在不同分辨率上统计图像特征点分布,从而获取图像的局部信息。



        如上图所示,将level(i)的图像划分为pow(4,i)个cell(bins),然后再每一cell上统计直方图特征,最后将所有level的直方图特征连接起来组成一个vector,作为图形的feature。在后文的描述中cell和bins是等价的。

        Pyramid Match Kernels:

        1)假设存在两个特征集合X、Y,其中每个特征x的维度为d。特征空间划分为不同的尺度,在尺度下把特征空间的每一维划出个bins,那么d维的特征空间就能划出个bins(论文中这么描述,但是在实际中是用K-means或BOW进行聚类,得到的每个类中心就是一个bin)。

        2)  在level(i)中,如果点x,y落入同一bin中就称x,y点Match,每个bin中匹配的点的个数为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值