CV 资源汇总

In the last couple of years there has been a trend on make code available for many of the state of the art papers. In most of the cases the code is Matlab -like scripts. Nevertheless, for heavy duty tasks (like object detection) some code is available in c/c++. In this page there are some of the resources that I frequently visit. I have been updating the original list of Rogelio Feris page. 

Feature Detection and Description


General Libraries: 

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. See Modern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training

  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications: 

  • FAST – High-speed corner detector implementation for a wide variety of platforms

  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications: 

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)

  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)

  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)

  • FREAK – Of my Good Friend Alex Alahi --- Faster than BRISK (invariant to rotations and scale) (CVPR 2012) 

SIFT and SURF Implementations: 

Other Local Feature Detectors and Descriptors: 

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.

  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).

  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors: 

  • GIST – Matlab code for the GIST descriptor

  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

 

Feature Coding and Pooling 

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.

  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

 

Convolutional Nets and Deep Learning 

 

  • NEW DeepLEarnToolbox: CNN, DBN, NN, SAE, CAE - All the algorithms are implemented in matlab with training and testing examples on mnist. 

  • NEW Caffe Caffe aims to provide computer vision scientists with a clean, modifiable implementation of state-of-the-art deep learning algorithms. For example, network structure is easily specified in separate config files, with no mess of hard-coded parameters in the code.

  • NEW Libccv  A C library for computer vision in general. Now also includes convolutional neural networks. 

  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.

  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.

  • Deep Learning - Various links for deep learning software.

 

Part-Based Models 

 

Attributes and Semantic Features 

 

Large-Scale Learning 

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).

  • LIBLINEAR – Library for large-scale linear SVM classification.

  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

 

Fast Indexing and Image Retrieval 

  • FLANN – Library for performing fast approximate nearest neighbor.

  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).

  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).

  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

 

Object Detection 

 

3D Recognition 

 

Action Recognition 

 


Datasets

 

Attributes 

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.

  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.

  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.

  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.

  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.

  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.

  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.

  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.

  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.

  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

 

Fine-grained Visual Categorization 

 

Face Detection 

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)

  • CMU/MIT – Classical face detection dataset.

 

Face Recognition 

  • Face Recognition Homepage – Large collection of face recognition datasets.

  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).

  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.

  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.

  • FERET – Classical face recognition dataset.

  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.

  • SCFace – Low-resolution face dataset captured from surveillance cameras.

 

Handwritten Digits 

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

 

Pedestrian Detection

 

Generic Object Recognition 

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.

  • Tiny Images – 80 million 32x32 low resolution images.

  • Pascal VOC – One of the most influential visual recognition datasets.

  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.

  • MIT LabelMe – Online annotation tool for building computer vision databases.

 

Scene Recognition

 

Feature Detection and Description 

  • VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. Check VLBenchmarksfor an evaluation framework.

 

Action Recognition

 

RGBD Recognition 












vlfeat网站:http://www.vlfeat.org/



展开阅读全文

没有更多推荐了,返回首页