字符串、数组 算法总结

本文详细介绍了数组和字符串相关的经典算法,包括最大子序列和的动态规划与分治法、最长递增子序列、最长公共子串与最长公共子序列的解法,以及最长不重复子串的两种方法。通过对这些算法的深入讲解,有助于提升对动态规划和分治策略的理解。
摘要由CSDN通过智能技术生成

一、最大子序列和

这里把最大子序列和放在第一个位置,它并不是字符串相关的问题,事实上它的目的是要找出由数组成的一维数组中和最大的连续子序列。比如[0-235-12]应返回9[-9-2-3-5-3]应返回-2


1、动态规划法

  设状态为f[j],表示以S[j]结尾的最大连续子序列和(即最大连续子序列的最后一项为S[j],但开头一项没有规定,不一定是S[1]),状态转移方程如下:

                                    f[j] = max(f[j-1]+S[j],S[j])    1<=j<=n

                                         target = max(f[j])   1<=j<=n

int MaxSubarray(int data[],int length)
{
	vector<int> f(length+1,0);

	int result=INT_MIN;

	for (int i=0;i<length;i++)
	{
		f[i+1] = max(f[i]+data[i],data[i]);
		
		result= max(f[i+1],result);
	}
	
	return result;
}

   如果想获得最大子序列和的初始和结束位置怎么办呢?我们知道,每当当前子数组和的小于0时,便是新一轮子数组的开始,每当更新最大和时,便可能对应结束的下标,这个时候,只要利用本轮的起始和结束位置更新上一次的始末位置就可以,程序结束,最大子数组和以及其始末位置便一起被记录下来了 

void MaxSubarray(int data[],int length, int &start, int &end, int &result)
{
	vector<int> f(length+1,0);
	result=INT_MIN;
	int curstart =0;
	for (int i=0;i<length;i++)
	{
		if (f[i]+data[i]>data[i])
		{
			f[i+1] = f[i]+data[i];
		}
		else
		{
			f[i+1] = data[i];	
			curstart =i;		
		}
		if (f[i+1]>result)
		{
                	result = f[i+1];			
			start = curstart;
			end =i;
		}
	}	
}

2、分治法

其实数组的问题,最好留点心,有一大部分题目是可以用分治的办法完成的,比如说这道题里面:最大子序列和可能出现在三个地方,1整个出现在输入数据的左半部分,2整个出现在输入数据的右半部分,3或者跨越输入数据的中部从而占据左右两个半部分。可以有以下代码:

int MaxSumRec( const vector<int> & a, int left, int right )  
{  
    if( left == right )  // Base case  
        if( a[ left ] > 0 )  
            return a[ left ];  
        else  
            return 0;  
    int center = ( left + right ) / 2;  
    int maxLeftSum  = maxSumRec( a, left, center );  
    int maxRightSum = maxSumRec( a, center + 1, right );  
    int maxLeftBorderSum = 0, leftBorderSum = 0;  
    for( int i = center; i >= left; i-- )  
    {  
        leftBorderSum += a[ i ];  
        if( leftBorderSum > maxLeftBorderSum )  
            maxLeftBorderSum = leftBorderSum;  
    }  
    int maxRightBorderSum = 0, rightBorderSum = 0;  
    for( int j = center + 1; j <= right; j++ )  
    {  
        rightBorderSum += a[ j ];  
        if( rightBorderSum > maxRightBorderSum )  
            maxRightBorderSum = rightBorderSum;  
    }  
    return max3( maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum );  
} 


二、最长递增子序列

和上一问题一样,这是数组序列中的问题,比如arr={1,5,8,2,3,4}的最长递增子序列是1,2,3,4

1、动态规划法

    结合上一题的思路,在数组的这类问题里面使用动态规划还是很常见的,从后向前分析,很容易想到,i个元素之前的最长递增子序列的长度要么是1比如说递减的数列),要么就是第i-1个元素之前的最长递增子序列加1


假设在目标数组array的前i个元素中,最长递增子序列的长度为LIS[i],那么

                                                  LIS[i] = max{1,LIS[k]+1},其中,对于任意的k<

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值