二叉树的常见问题有如下几个,如果解决好了,就跟链表一样轻松:唯一不一样的是,二叉树是非线性结构。常见的问题如下:
二叉树的问题
1.二叉树三种周游(traversal)方式:
二叉树的问题
1.二叉树三种周游(traversal)方式:
2.怎样从顶部开始逐层打印二叉树结点数据
3.如何判断一棵二叉树是否是平衡二叉树
4.设计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)则不得
分。
5.如何不用递归实现二叉树的前序/后序/中序遍历?
6.在二叉树中找出和为某一值的所有路径
7.怎样编写一个程序,把一个有序整数数组放到二叉树中?
8.判断整数序列是不是二叉搜索树的后序遍历结果
9.求二叉树的镜像
10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算法,找出距
离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
11.把二叉搜索树转变成排序的双向链表
12.打印二叉树中的所有路径(与题目5很相似)
3.如何判断一棵二叉树是否是平衡二叉树
4.设计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)则不得分。
5.如何不用递归实现二叉树的前序/后序/中序遍历?
6.在二叉树中找出和为某一值的所有路径(注意是到叶子节点)
7.怎样编写一个程序,把一个有序整数数组放到二叉树中?
8.判断整数序列是不是二叉搜索树的后序遍历结果
9.求二叉树的镜像
10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算法,找出距离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
11.把二叉搜索树转变成排序的双向链表
12.打印二叉树中的所有路径(与题目6很相似)
解决思路:
1.二叉树三种周游(traversal)方式:任何一本数据结构的书都有描述,略过;
2.怎样从顶部开始逐层打印二叉树结点数据?
设置一个队列,然后只要队列不为空,将对首元素的左右孩子加入队列(如果左右孩子不为空),然后将队列的首元素出对即可,如下图所示:
二叉树如下图所示:
那么,整个过程如下:
自然,就输出了a,b,c,d,e,f
3.如何判断一个二叉树是否是平衡的?
太简单了,利用递归就可以了:判断根节点的左右子树深度之差是否小于等于1(这里需要用到求深度的方法),如果是,根节点就是平衡的;然后,在判断根节点的左孩子和右孩子是否是平衡的。如此继续下去,直到遇见叶子节点。一旦不是,立刻返回false;
计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)则不得分
首先找到这两个点key1和key2,并且记录下找到这两个点的路径Path1和Path2。然后,找到第一个点k满足,key1<k<key2就可以了。
如图:
假设key1 = 5,key2 = 7,那么显然,Path1{8,6,5}, Path2{8,6,7}。满足第一个key1<k<key2的k为6。故k = 6。
至于怎么求出Path1和Path2,可以看问题12。
5.如何不用递归实现二叉树的前序/后序/中序遍历?(网易面试就问到了,悲剧了,当时一下子卡住了)
看看书,基本任何一本数据结构的书都有,主要利用栈。
6.在二叉树中找出和为某一值的所有路径?
还是先解决12题目,访问二叉树到叶子节点的任意路径。这个问题解决了,自然求和看是否满足条件就可以了。
7.怎样编写一个程序,把一个有序整数数组放到二叉树中?
递归,还是利用递归:
设有int array[begin,end],首先将array[(begin + end)/2]加入二叉树,然后递归去做array[begin,(begin + end)/2 - 1]和array[(begin + end)/2 + 1, end]。注意写好函数的形式就可以了。一切都很自然。
8.判断整数序列是不是二叉搜索树的后序遍历结果?
看看吧,后续遍历是这样做的:左右根,所以访问的最有一个节点实际上就是整棵二叉树的根节点root:然后,找到第一个大于该节点值的根节点b,b就是root右子树最左边的节点(大于根节点的最小节点)。那么b前面的就是root的左子树。既然是二叉搜索树的遍历结果,那么在b和root之间的遍历结果,都应该大于b。去拿这个作为判断的条件。
9.求二叉树的镜像?
还是利用递归:只要节点不为空,交换左右子树的指针,然后在分别求左子树的镜像,再求右子树的镜像,直到节点为NULL。
10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算法,找出距离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
首先,在BST中,最小值就是最左边的节点,最大值就是最右边的节点。在分别求出min和max后,求出f。然后利用查找,找出一个大于f的节点就可以了。
复杂度为logN。
11.把二叉搜索树转变成排序的双向链表
12..打印二叉树中的所有路径
路径的定义就是从根节点到叶子节点的点的集合。
还是利用递归:用一个list来保存经过的节点,如果已经是叶子节点了,那么打印list的所有内容;如果不是,那么将节点加入list,然后继续递归调用该函数,只不过,入口的参数变成了该节点的左子树和右子树。
程序如下:
解答1:自己看书了
解答2:
//问题2:怎样从顶部开始逐层打印二叉树结点数据
void PrintAtLevel(BiTNode* root){
vector<BiTNode*> vector;
vector.push_back(root);
while(!vector.empty()){
BiTNode* tmp = vector.front();
if(tmp->lchild != NULL)
vector.push_back(tmp->lchild);
if (tmp->rchild != NULL)
vector.push_back(tmp->rchild);
cout << tmp->data << endl;
vector.pop_back();
}
}
//问题3:如何判断一棵二叉树是否是平衡二叉树
int isBalencedTree(treeNode* root){
if (root == NULL)
return 0;
int depth1 = getDepth(root->lchild);
int depth2 = getDepth(root->rchild);
if (depth1 == depth2 || depth1 == depth2 + 1 || depth1 == depth2 - 1)
return 1;
else
return 0;
int flag1 = isBalencedTree(root->lchild);
int flag2 = isBalencedTree(root->rchild);
if (flag1 && flag2)
return 1;
else
return 0;
}
//问题4:设计一个算法,找出二叉树上任意两个节点的最近共同父结点,复杂度如果是O(n2)
则不得分。
int getPublicAncestors(treeNode* root,int key1,int key2){
treeNode* ptr = root;
int path1[1000];
int pathLen1 = 0;
while (ptr != NULL){
if (key1 == ptr->data){
path1[pathLen1] = ptr->data;
pathLen1 ++;
printArray(path1,pathLen1);
break;
}
else
if (ptr->data > key1){
path1[pathLen1] = ptr->data;
pathLen1 ++;
ptr = ptr->lchild;
}
else
if (ptr->data < key1){
path1[pathLen1] = ptr->data;
pathLen1 ++;
ptr = ptr->rchild;
}
}
ptr = root;
int path2[1000];
int pathLen2 = 0;
while (ptr != NULL){
if (key2 == ptr->data){
path2[pathLen2] = ptr->data;
pathLen2 ++;
printArray(path2,pathLen2);
break;
}
else
if (ptr->data > key2){
path2[pathLen2] = ptr->data;
pathLen2 ++;
ptr = ptr->lchild;
}
else
if (ptr->data < key2){
path2[pathLen2] = ptr->data;
pathLen2 ++;
ptr = ptr->rchild;
}
}
int i = pathLen1 - 1;
//key1和key2有序,
if (key2 < key1){
key2 = key2^key1;
key1 = key2^key1;
key2 = key2^key1;
}
for (; i > 0; i --){
if (key1 < path1[i] && path1[i]< key2){
int result = path1[i];
return result;
}
}
}
//问题6:在二叉树中找出和为某一值的所有路径
void FindPath(treeNode* root, int path[],int pathLen,int expectedSum, int
currentSum){
if (root == NULL)
return;
currentSum += root->data;
path[pathLen] = root->data;
pathLen ++;
if (currentSum == expectedSum && root->lchild == NULL && root->rchild ==
NULL){
printArray(path,pathLen);
}
if (root->lchild != NULL){
FindPath(root->lchild,path,pathLen,expectedSum,currentSum);
}
if (root->rchild != NULL){
FindPath(root-
>rchild,path,pathLen,expectedSum,currentSum);
}
currentSum -= root->data;
}
//问题7:怎样编写一个程序,把一个有序整数数组放到二叉树中?
void createTreeFromArray(int a[], int begin, int end, treeNode** root){
if (begin > end)
return;
else{
*root = (treeNode*) malloc(sizeof(treeNode));
int mid = (begin + end) / 2;
(*root)->data = a[mid];
(*root)->rchild = NULL;
(*root)->lchild = NULL;
createTreeFromArray(a, begin ,mid - 1, &(*root)->lchild);
createTreeFromArray(a, mid + 1 ,end, &(*root)->rchild);
}
}
//问题8:判断整数序列是不是二叉搜索树的后//序遍历结果
int isPostTraverse(int a[], int begin ,int end){
if(begin >= end)
return 1;
else{
int root = a[end];
int lroot;
int i;
int location = begin;
for (i = begin; i < end ; i ++){
if(a[i] > root){
location = i;
lroot = a[i];
break;
}
}
for (i = location + 1; i < end; i++){
if (a[i] < lroot){
return 0;
}
}
int flag1 = isPostTraverse(a,begin,location -1);
int flag2 = isPostTraverse(a,location,end - 1);
if (flag1 && flag2)
return 1;
else
return 0;
}
}
//问题9:求二叉树的镜像
void changeMirror(treeNode** root){
if ( *root == NULL)
return;
else{
treeNode* temp = (*root)->lchild;
(*root)->lchild = (*root)->rchild;
(*root)->rchild = temp;
changeMirror(&(*root)->lchild);
changeMirror(&(*root)->rchild);
}
}
//问题10:10.一棵排序二叉树(即二叉搜索树BST),令 f=(最大值+最小值)/2,设计一个算
//法,找出距离f值最近、大于f值的结点。复杂度如果是O(n2)则不得分。
int findNearMid(treeNode** root){
treeNode* ptr = *root;
int min, max;
while (ptr != NULL){
min = ptr->data;
ptr = ptr->lchild;
}
printf("the min is %d\n",min);
ptr = *root;
while (ptr != NULL){
max = ptr->data;
ptr = ptr->rchild;
}
printf("the max is %d\n",max);
int half = (min + max) >> 1;
printf("half is %d\n",half);
ptr = *root;
while (1){
if (ptr->data < half){
ptr = ptr->rchild;
}
else
if (ptr->data > half){
int result = ptr->data;
return result;
}
else
{
return (ptr->rchild)->data;
}
}
}
//问题12:打印二叉树中的所有路径(与题目5很相似)
void printPathsRecur(treeNode* node, int path[], int pathLen) {
if (node == NULL)
return;
// append this node to the path array
path[pathLen] = node->data;
pathLen++;
// it's a leaf, so print the path that led to here
if (node->lchild == NULL && node->rchild == NULL) {
printArray(path, pathLen);
} else {
// otherwise try both subtrees
printPathsRecur(node->lchild, path, pathLen);
printPathsRecur(node->rchild, path, pathLen);
}
}
void printPaths(treeNode* node) {
int path[1000];
printPathsRecur(node, path, 0);
}
//用到的辅助函数:
/**
* 求二叉树的深度
*/
int getDepth(tNode root) {
if (root == NULL)
return 0;
else
return getDepth(root->lchild) > getLeaf(root->rchild) ? 1 +
getDepth(
root->lchild) : 1 + getDepth(root->rchild);
// {
// int depthLchild = 1 + getDepth(root->lchild);
// int depthRchild = 1 + getDepth(root->rchild);
// return depthLchild > depthRchild ? depthLchild:
depthRchild;
// }
}
/**
* 打印数组
*/
void printArray(int ints[], int len) {
int i;
for (i = 0; i < len; i++) {
printf("%d ", ints[i]);
}
printf("\n");
}