范数

范数是衡量向量或矩阵大小的概念,包括l0、l1和l2范数。在机器学习中,正则化通过引入l1或l2范数避免过拟合,l1正则化产生稀疏模型,适合特征选择,l2正则化有助于权重衰减。L1正则化对应Laplace先验,L2正则化与Gaussian先验相对应。
摘要由CSDN通过智能技术生成

什么是范数?

范数,是具有 “长度” 概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。
在数学上,范数包括向量范数和矩阵范数。
向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。 一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和尺都可以来度量远近一样;对于矩阵范数,学过线性代数,我们知道,通过运算 AX=B,可以将向量 X 变化为 B,矩阵范数就是来度量这个变化大小的。
向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。

范数的定义

将任意向量 x x x l p l_p lp范数定义为:
∣ ∣ x ∣ ∣ p = ∑ i ∣ x i ∣ p p ||x||_p=\sqrt[p]{\sum_i|x_i|^p} xp=pixip
p = 0 p=0 p=0,就有了 l 0 l_0 l0范数,即 ∣ ∣ x ∣ ∣ 0 = ∑ i x i 0 0 ||x||_0=\sqrt[0]{\sum_i{x_i}^0} x0=0ixi0 ,表示向量 x x x中非0元素的个数。
在诸多机器学习模型中,我们很多时候希望最小化向量的 l 0 l0 l0范数。然而,由于 l 0 l0 l0范数仅仅表示向量中非0元素的个数,因此,这个模型被认为是一个NP-hard问题,即直接求解它很复杂。因此,可以把它转换成 l 1 l1 l1范数最小化问题。

p = 1 p=1 p=1,为 l 1 l1 l1范数,即 ∣ ∣ x ∣ ∣ 1 = ∑ i ∣ x i ∣ ||x||_1=\sum_i{|x_i|} x1=ixi,等于向量中所有元素绝对值之和。相应的,一个 l 1 l1 l1范数优化问题为:
m i n ∣ ∣ x ∣ ∣ 1 min||x||_1 minx1
s . t . A x = b s.t.Ax=b s.t.Ax=b
这个问题相比于 l 0 l_0 l0范数优化问题更容易求解,借助现有凸优化算法,就能够找到我们想要的可行解。
p = 2 p=2 p=2,为 l 2 l2 l2范数,表示向量或矩阵的元素平方和,即 ∣ ∣ x ∣ ∣ 2 = ∑ i x i 2 ||x||_2=\sqrt{\sum_i{x_i}^2} x2=ixi2 l 2 l2 l2范数的优化模型如下:
m i n ∣ ∣ x ∣ ∣ 2 min||x||_2 minx2
s . t . A x = b s.t.Ax=b s.t.Ax=b

正则项与模型

为了避免过拟合的问题,一种解决办法是在模型的损失函数中加入正则项。对于线性回归模型,使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值