朴素贝叶斯法

简介

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,属于生成模型

模型

设输入空间 X ∈ R n X\in{R}^n XRn,输出空间为类别标记集合 Y = { c 1 , c 2 , . . . , c k } Y=\{c_1, c_2,...,c_k\} Y={c1,c2,...,ck}。X是定义在输入空间上的随机变量,Y是定义在输出空间上的随机变量。 P ( X , Y ) P(X,Y) P(X,Y)是X和Y的联合概率分布。
训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)} P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生。
朴素贝叶斯法通过训练数据集学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y)
先验概率分布: P = ( Y = c k ) P=(Y=c_k) P=(Y=ck)
条件概率分布: P = ( X = x ∣ Y = c k ) = P ( x ( 1 ) , . . . , x ( n ) ∣ Y = c k ) P=(X=x|Y=c_k)=P(x^{(1)},...,x^{(n)}|Y=c_k) P=(X=xY=ck)=P(x(1),...,x(n)Y=ck)
由条件独立性假设, P = ∏ j P ( x ( j ) ∣ Y = c k ) P=\prod_j{P(x^{(j)}|Y=c_k)} P=jP(x(j)Y=ck) (分类的特征在类确定的条件下都是独立的)
后验概率分布: P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ P ( X = x ∣ Y = c k ) P ( Y = c k ) = P ( Y = c k ) ∏ P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ P ( Y = c k ) ∏ P ( X ( j ) = x ( j ) ∣ Y = c k ) P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum{P(X=x|Y=c_k)P(Y=c_k)}}=\frac{P(Y=c_k)\prod{P(X^{(j)}=x^{(j)}|Y=c_k)}}{\sum{P(Y=c_k)}\prod{P(X^{(j)}=x^{(j)}|Y=c_k)}} P(Y=ckX=x)=P(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)=P(Y=ck)P(X(j)=x(j)Y=ck)P(Y=ck)P(X(j)=x(j)Y=ck)
于是,朴素贝叶斯分类器可以表示为:
y = a r g m a x P ( Y = c k ) ∏ P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ P ( Y = c k ) ∏ P ( X ( j ) = x ( j ) ∣ Y = c k ) = a r g m a x P ( Y = c k ) ∏ P ( X ( j ) = x ( j ) ∣ Y = c k ) y=argmax\frac{P(Y=c_k)\prod{P(X^{(j)}=x^{(j)}|Y=c_k)}}{\sum{P(Y=c_k)}\prod{P(X^{(j)}=x^{(j)}|Y=c_k)}}=argmax{P(Y=c_k)\prod{P(X^{(j)}=x^{(j)}|Y=c_k)}} y=argmaxP(Y=ck)P(X(j)=x(j)Y=ck)P(Y=ck)P(X(j)=x(j)Y=ck)=argmaxP(Y=ck)P(X(j)=x(j)Y=ck)
后验概率最大化的意义:期望风险最小化。

算法

在朴素贝叶斯法中,学习意味着估计 P ( Y = c k ) P(Y=c_k) P(Y=ck) P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X^{(j)}=x^{(j)}|Y=c_k) P(X(j)=x(j)Y=ck)。可以应用极大似然估计法估计相应的概率。
先验概率: P ( Y = c k ) = ∑ I ( y i = c k ) N P(Y=c_k)=\frac{\sum{I(y_i=c_k)}}{N} P(Y=ck)=NI(yi=ck)
条件概率: P ( X ( j ) = a j l ∣ Y = c k ) = ∑ I ( x i ( j ) = a j l , y i = c k ) ∑ I ( Y i = c k ) P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum{I(x_i^{(j)}=a_{jl},y_i=c_k)}}{\sum{I(Y_i=c_k)}} P(X(j)=ajlY=ck)=I(Yi=ck)I(xi(j)=ajl,yi=ck)
其中, x i ( j ) x_i^{(j)} xi(j)是第i个样本的第j个特征, a j l a_{jl} ajl是第j个特征可能取的第l个值。

用极大似然估计可能会出现所要估计的概率值为0的情况,这时会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用贝叶斯估计。
P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ I ( x i ( j ) = a j l , y i = c k ) + λ ∑ I ( y i = c k ) + S j λ P_\lambda(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum{I(x_i^{(j)}=a_{jl},y_i=c_k)}+\lambda}{\sum{I(y_i=c_k)+S_j\lambda}} Pλ(X(j)=ajlY=ck)=I(yi=ck)+SjλI(xi(j)=ajl,yi=ck)+λ
其中 λ > = 0 \lambda>=0 λ>=0 S j S_j Sj是第j个特征可能取的值的个数。
常取 λ = 1 \lambda=1 λ=1,这时被称为Laplace平滑。
同样的, P k ( Y = c k ) = ∑ ( I ( y i = c k ) + λ N + K λ P_k(Y=c_k)=\frac{\sum(I(y_i=c_k)+\lambda}{N+K\lambda} Pk(Y=ck)=N+Kλ(I(yi=ck)+λ
其中K是Y的取值可能性个数。

参考文献

《统计学习方法》 李航

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值