泰勒展开式

泰勒公式将函数转换为多项式,实现近似。公式包括泰勒展开、余项和拉格朗日形式,利用高阶导数匹配来逼近原函数。文中通过柯西中值定理解释余项,并通过实例深入解析。
摘要由CSDN通过智能技术生成

泰勒公式通过把任意函数表达式转换(重写)为多项式形式,是一种极其强大的函数近似工具。
公式:
f ( x ) T a y l o r = ∑ n = 0 ∞ f n ( a ) n ! ∗ ( x − a ) n f(x)_{Taylor}=\sum_{n=0}^{\infin}{\frac{f^n(a)}{n!}*(x-a)^n} f(x)Taylor=n=0n!fn(a)(xa)n
= f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ( 2 ) ( a ) 2 ! ( x − a ) 2 + . . . + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) =f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^2+...+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x) =f(a)+1!f(a)(xa)+2!f(2)(a)(xa)2+...+n!f(n)(a)(xa)n+Rn(x)
其中余项 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) ( n + 1 ) , ξ ∈ ( a , x ) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{(n+1)},\xi\in{(a,x)} Rn(x)=(n+1)!f(n+1)(ξ)(xa)(n+1),ξ(a,x)

解释
只要两个事物的初始速度相同,初速度的加速度相同,初速度的加速度的加速度相同…如果推到极限,那么这两者的运动轨迹就会无限相同。这就相当于模仿一个事物,就不能仅仅模仿它的表面,还要模仿它的变化,如果它的变化都在变,我们就跟着变,只要每个细节相同,那么就真假莫辨。
我们都知道倒数代表了当前的变化率,导数的导数就代表变化率的变化率…因此,要找个近似函数模仿原函数,那么就要让他们的各阶导数都相同。
可是什么东西才会保证有n阶导数呢?多项式完全符合要求!只要调整多项式的最高阶数,就能求导多少次,将其每阶导数取相等于原函数的每阶导数,就能保证他们各个阶次的变化都相同,达到模仿原函数的目的。
实例:
在这里插入图片描述

余项推导
拉格朗日余项
令式中前面的有限项为 P ( x ) P(x) P(x),后面无限个误差项为 G ( x ) G(x) G(x),则 f ( x ) = P ( x ) + G ( x ) f(x)=P(x)+G(x) f(x)=P(x)+G(x)
G ( x ) = f ( n + 1 ) ( a ) ( x − a ) n + 1 ( n + 1 ) ! + f ( n + 2 ) ( a ) ( x − a ) n + 2 ( n + 2 ) ! + . . . G(x)=\frac{f^{(n+1)}(a)(x-a)^{n+1}}{(n+1)!}+\frac{f^{(n+2)}(a)(x-a)^{n+2}}{(n+2)!}+... G(x)=(n+1)!f(n+1)(a)(xa)n+1+(n+2)!f(n+2)(a)(xa)n+2+...
G ′ ( x ) = f ( n + 1 ) ( a ) ( x − a ) n ( n ) ! + f ( n + 2 ) ( a ) ( x − a ) n

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值