时间限制:1秒
空间限制:100768K
小易有一个长度为N的正整数数列A = {A[1], A[2], A[3]..., A[N]}。
牛博士给小易出了一个难题:
对数列A进行重新排列,使数列A满足所有的A[i] * A[i + 1](1 ≤ i ≤ N - 1)都是4的倍数。
小易现在需要判断一个数列是否可以重排之后满足牛博士的要求。
输入描述:
输入的第一行为数列的个数t(1 ≤ t ≤ 10),
接下来每两行描述一个数列A,第一行为数列长度n(1 ≤ n ≤ 10^5)
第二行为n个正整数A[i](1 ≤ A[i] ≤ 10^9)
输出描述:
对于每个数列输出一行表示是否可以满足牛博士要求,如果可以输出Yes,否则输出No。
输入例子1:
2
3
1 10 100
4
1 2 3 4
输出例子1:
Yes
No
思路:把每个数中含有2的个数进行统计,比如100就含有两个2,把数分成三类,含2的个数大于等于2个的(记为count2),一个的(count1),零个的(count0),比如 1,100,10,其中含有2的个数大于等于2个的只有1个,等于1个的只有1个,等于0个的也只有1个,当count2大于等于count0的时候一定就可以组成让相邻的数乘积是4的倍数。
#include<iostream>
#include<vector>
using namespace std;
#define N 100000
bool isright(int *a, int n)
{
int count0 = 0, count1 = 0, count2 = 0;
for (int i = 0; i < n; i++)
{
int num = a[i];
int count = 0;
while (num % 2 == 0)
{
count++;
// cout << "num=" << num << endl;
num = num / 2;
if (count >= 2)break;
}
if (count == 0)count0++;
else if (count == 1)count1++;
else count2++;
}
if (count2 >= count0)return true;
if (count2 == count0 - 1)
{
return count1 == 0 ? true : false;
}
return false;
}
int main()
{
int t;
int a[N];
while (cin >> t)
{
while (t--)
{
int n = 0;
cin >> n;
for (int i = 0; i < n; i++)cin >> a[i];
if (isright(a, n))cout << "YES" << endl;
else cout << "NO" << endl;
}
}
}