查壳
die分析到是一个linux平台的可执行文件,没有加壳,可直接用ida分析
IDA分析
发现有main函数,直接反编译查看伪代码
发现了一连串不知名的函数
bing搜一下相关资料,找到了相关介绍
链接: https://blog.csdn.net/weixin_42016744/article/details/118516989
其中__gmpz_init_set_str(mpz_t rop, const char *str, int base)表示将str字符串以base指定的进制传入给rop。
__gmpz_powm(mpz_t rop, const mpz_t base, const mpz_t exp, const mpz_t mod)表示将base的exp次方除以mod的模赋值给rop。
__gmpz_cmp()为比较函数,相等则返回值为0,不相等则不为0。
可以看出这一系列函数的处理过程相当于RSA的处理过程
转一下我写的RSA类题解法:
python gmpy2模块、yafu的简单学习记录(RSA向)
v5即e,v4即N,v6原值即为m
通过yafu求得p,q值
p = 282164587459512124844245113950593348271
q = 366669102002966856876605669837014229419
接着写脚本,利用gmpy2模块求e的逆元d,反推出m的值即可
import gmpy2
import binascii
p = 366669102002966856876605669837014229419
q = 282164587459512124844245113950593348271
#p,q值是通过yafu得来的
N = 103461035900816914121390101299049044413950405173712170434161686539878160984549
s = 0xad939ff59f6e70bcbfad406f2494993757eee98b91bc244184a377520d06fc35
phi = (p - 1) * (q - 1)
e = 65537
d = gmpy2.invert(e, phi)
#gmpy2.invert()方法可求出e的逆元d
m = gmpy2.powmod(s, d, N)
#得到明文m=mpz(185534734614696481020381637136165435809958101675798337848243069)
m = hex(m)
#把m转换为十六进制字符串m = '0x73756374667b50776e5f405f68756e647265645f79656172737d'
##下面用到binascii模块
m = m[2:].encode()
#利用切片截取0x后边的数据,并以utf-8编码
m = binascii.a2b_hex(m)
#利用binascii模块中a2b_hex方法将表示16进制数据的ascii数据转换成字节串数据m = b'suctf{Pwn_@_hundred_years}'
得到flag{Pwn_@_hundred_years}