SKlearn——逻辑斯蒂回归(LR)参数设置

本文介绍了SKlearn中逻辑斯蒂回归(LR)的参数设置,包括penalty、C、max_iter、tol、class_weight、sample_weight及solver的选择。LR是一种用于分类的线性模型,参数C调节正则化强度,class_weight和sample_weight用于处理类别不平衡问题,solver参数影响求解速度和正则化类型。多分类选项multi_class涉及到one-vs-rest和many-vs-many策略。
摘要由CSDN通过智能技术生成

SKlearn——逻辑斯蒂回归(LR)

小白文,初学机器学习,主要记录下其中的参数设置

1. from skearn.linear_model import LogisticRegression

使用此语句引入skearn中的逻辑斯蒂模型 。LR是个主要用于分类的线性模型,而非回归问题。

2.其中部分参数设置
#LR中的一部分参数设置
  clf = LogisticRegression(penalty='l2', C=0.3, max_iter=400, tol=
好的,我可以回答您的问题。您可以按照以下步骤在sklearn中绘制ROC曲线: 1. 准备数据:首先,您需要准备测试数据集和训练数据集。您还需要使用训练数据集来训练逻辑回归模型。 2. 训练模型:使用训练数据集训练逻辑回归模型。您可以使用以下代码: ``` from sklearn.linear_model import LogisticRegression # 创建逻辑回归对象 lr = LogisticRegression() # 使用训练数据集来训练模型 lr.fit(X_train, y_train) ``` 3. 预测概率:使用测试数据集来预测类别概率。您可以使用以下代码: ``` # 预测测试数据集的类别概率 y_pred_proba = lr.predict_proba(X_test)[:,1] ``` 4. 计算ROC曲线数据:计算真阳性率(TPR)和假阳性率(FPR)。您可以使用以下代码: ``` from sklearn.metrics import roc_curve, auc # 计算ROC曲线数据 fpr,tpr,thresholds = roc_curve(y_test, y_pred_proba) roc_auc = auc(fpr,tpr) ``` 5. 绘制ROC曲线:使用Matplotlib库绘制ROC曲线。您可以使用以下代码: ``` import matplotlib.pyplot as plt # 绘制ROC曲线 plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ``` 这是在sklearn中绘制ROC曲线的简单步骤。同时,您还可以使用KS曲线来评估模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值