如果在不侵犯版权的前提下,翻译国外学术论文,并让大众所知悉?

问: 本行业内,有很多高质量外文学术论文,受到重视的不多,鉴于本人行业工作经验,可以高质量翻译相关论文并引起行业重视,国内期刊是否接受外文论文的翻译稿发表?

请知悉的人给予指导!

我提的问题可能不清晰造成了大家的误解,我的目的不是为了发表赚职称,而是为了让更多同行了解相关行业的最新成果,当然通过这种方式能认识一些行业大拿也算是额外收益。

因此我更改题干如上《如果在不侵犯版权的前提下,翻译国外学术论文,并让大众所知悉?》

答: 谢邀

首先你要是发表行业内也有的文章,那么可以直接了当的告诉你,这属于变相抄袭洗稿,一旦被发现那么会被终身拉黑。

其次,这种如果非要发的话,只能去一些不知名的普刊,比如一些不具备影响因子,不被知网收录的杂刊,但是这一类的期刊你发了也不会有任何的效果,因为不论是单位还是学校都不会承认。

即使你是想要发普刊,那么也需要有一定的原创性质存在,现在普刊的原创度不可以低于知网70%也就是说,你最多引用30%。

最后,翻译国外的文章是没有前途的,要是学习一下还可以,你可以总结观点,学以致用,最多可以引用你觉得比较有权威的观点以论证你的想法,但是用来作为学术发表,即使你翻译的再好,版权也不是你的,对于学术发表版权是十分重要的,不要拿着去冒险。

另一个要提醒你,即使是国外不被重视的外文,你要清楚一件事,国外的版权意识比国内强的不止一倍两倍,一旦被发现是很严肃的一件事,本回答并不是危言耸听,还希望题主可以自己发挥聪明才智,写出好的文章。

作者:论文辅导员 链接:http://www.lwfdy.com/archives/29.html 来源:https://www.lwfdy.com/

转载于:https://my.oschina.net/lwfdy/blog/3078323

### 替代CUDA的方案或依赖GPU的计算方法 尽管CUDA和NVIDIA显卡在高性能计算领域占据主导地位,但在某些情况下无法使用它们时,仍然有多种替代方案可供选择。以下是几种常见的解决方案: #### 1. 使用其他异构计算框架 除了CUDA之外,还有许多其他的异构计算框架支持多平台硬件加速。例如OpenCL是一种开放标准的行编程框架,可以在AMD、Intel和其他厂商的GPU上运行[^3]。它提供了类似于CUDA的功能集,允许开者编写跨平台的行应用程序。 另一种选择是SYCL,这是Khronos Group推出的一种C++ API接口,旨在简化异构系统上的高级编程模型。通过利用单源编码风格,SYCL使得程序员能够在同类型的处理器(包括但限于CPU, GPU 和 FPGA)之上实现统一的数据处理逻辑[^4]。 ```cpp // OpenCL Kernel Example __kernel void vector_add(__global const float *A, __global const float *B, __global float *C) { int i = get_global_id(0); C[i] = A[i] + B[i]; } ``` #### 2. 利用CPU进行高效串行与行运算 当缺乏专用图形处理器资源时,现代中央处理器(CPU)也可以承担起繁重的工作负载。英特尔推出的Threading Building Blocks (TBB),微软提供的Parallel Patterns Library(PPL),以及开源项目Boost.Compute都是优秀的库选项,可以帮助充分利用多核心优势完成复杂的数值模拟任务或者图像渲染工作流等操作。 此外,还可以考虑采用MPI(Message Passing Interface)/OpenMP这样的消息传递机制来组织大规模集群环境下的分布式作业调度;而对于更细粒度的任务划分,则可以借助于std::thread或其他类似的轻量级线程池管理器来进行本地化的控制。 #### 3. 借助FPGA实施定制化硬件加速 现场可编程门阵列(Field Programmable Gate Array,FPGAs)因其高度灵活性而成为另一个重要的备选方向。相比固定的ASIC(Application Specific Integrated Circuits)设计方案而言,FPGAs允许用户根据具体应用场景需求自行定义内部电路结构从而达到最佳性能表现的同时还能兼顾功耗开销方面的考量因素。 值得注意的是,在实际部署过程中往往还需要搭配相应的高层次综合工具链(High-Level Synthesis Tools,HLSs)一起配合使用才能有效缩短开周期降低成本投入风险等问题存在差异较大因此需谨慎评估后再做决定是否采纳该路径作为最终实施方案之一部分组成要素而已非唯一正确答案所在之处也请知悉上述情况之后再做出合理判断即可满足大部分常规条件下所需基本功能要求就可以了谢谢合作愉快! ```python import pyopencl as cl platforms = cl.get_platforms() devices = platforms[0].get_devices() context = cl.Context(devices=devices) queue = cl.CommandQueue(context) program_source = """ __kernel void saxpy(__global const float *a_g, __global const float *b_g, __global float *c_g){ int gid = get_global_id(0); c_g[gid] = a_g[gid]*2.f+b_g[gid]; } """ prg = cl.Program(context, program_source).build() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值