在医学内窥镜或手术影像领域,“器官运动先验”或“形变估计模型”通常指的是对特定器官(如肝脏、肾脏、心脏等)的解剖形状、柔性运动方式、受外力或生理节律影响而产生的变形规律的先验性假设或统计模型。它们可以帮助在仅有单帧图像的情况下,对器官的可行运动/形变做出合理约束,从而推断出“光流”或“非刚性场(non-rigid field)”的近似。
1.文献与思路
在医学图像处理与手术导航领域,常见的先验包括:
-
基于统计形状模型(Statistical Shape Model, SSM)
- 通过预先采集大量该器官的 3D CT/MR 数据,采用 PCA、CPD( Coherent Point Drift ) 或其它方法,学习器官在不同形变姿态下的一组“主成分”。
- 如 Active Shape Model (ASM)、Statistical Deformation Model 等,都属于这一范畴。
- 当我们只有单帧的 2D 内窥镜图像时,可将 2D 检测到的轮廓/关键点与 3D 形状主成分对齐,迭代优化得到一个最符合“统计先验”的形变场。
- 相关文献示例:
- Cootes, T. F., et al. “Active shape models—their training and application.” Computer vision and image understanding, 1995.
- Heimann, T., & Meinzer, H. P. “Statistical shape models for 3D medical image segmentation: a review.” Medical image analysis, 2009.
-
Biomechanical / 仿真模型
- 将器官视为弹性体或近似线性/非线性弹性材料,建立有限元(Finite Element)方程来模拟位移-应力关系。
- 给定单帧图像中器官某些表面/标记点的观测位置,通过最小化弹性势能或能量函数,求解器官内部的形变场。
- 这在手术导航、肝脏/心脏形变跟踪中较常见。
- 示例文献:
- Rucker, D. C., et al. “A mechanics-based model for minimally invasive surgery tool-tissue interaction: Formulation and finite element implementation.” etc.
- Langø et al. “Biomechanical Modelling of Soft Tissue Deformation for Laparoscopic Surgery Simulation,” MICCAI workshops, ~2000s.
-
基于深度学习的非刚性配准(Non-rigid Registration)网络
- 这类方法通常需要大量带标注或合成数据进行训练,让网络学会将输入的单张图像(或两张图像)映射到一个形变场。
- 若只有单张图像,往往需要在网络损失中嵌入形状正则化(Shape Prior)或多器官先验(Multi-organ prior)。
- 相关参考:
- Sokooti, H., et al. “Nonrigid image registration using multi-scale 3D convolutional neural networks.” MICCAI, 2017. (大多基于成对图像,但形变正则可类推到单帧。)
- Hu, Y., et al. “Label-driven weakly-supervised learning for universal lesion detection and localization.” (一些方法会使用解剖先验。)
-
融合几何先验的单帧 “Scene Flow” 或 “Single-frame Flow”
- 有些研究在内窥镜/腔镜场景下,结合器官结构先验 + 镜头光学几何,利用形态学线索(边缘、血管纹理等)推断运动场。
- 示例:
- Penza, V., et al. “Anisotropic total variation regularization with shape priors for 2D/3D deformable registration in endoscopic images.” (将形状先验引入到正则项中。)
- Ye, M., et al. “Real-time 2D to 3D registration via shape-based SIFT features and deformable surface model.” etc.
2、 如何引用先验模型
一条比较合理的思路是:用先验或形变模型来约束 ‘FlowNet’ 的预测,使之落在“可能的器官运动”空间内。具体可以:
-
将先验编码进 所需模型 的训练过程
- 训练时,对网络输出的光流场 F^i(x,y)\hat{F}_i(x,y)F^i(x,y) 增加一个约束或正则项 R(F^i)R(\hat{F}_i)R(F^i),使得 F^i\hat{F}_iF^i 不偏离统计模型或物理模型。
- 例如: Ltotal=Lrecon(F^i,GT)+λ R(F^i), \mathcal{L}_\text{total} = \mathcal{L}_\text{recon}(\hat{F}_i, \text{GT}) + \lambda \, R(\hat{F}_i),Ltotal=Lrecon(F^i,GT)+λR(F^i), 其中 R(F^i)R(\hat{F}_i)R(F^i) 可以是
- 形状先验(统计主成分空间内的投影误差)、
- 弹性势能(若定义器官为弹性体),或
- 形变平滑度(大多数非刚性场都要求平滑或弱梯度)。
- 训练得到的 FlowNet 可以在推理时直接对单帧推断出一个“满足形变先验”的光流场。
-
做后处理/优化时融入先验
- 如果 FlowNet 仅是一个初步预测器,可在网络输出后迭代一个能量优化过程。例如: F^i = argminF ∥FlowNet(Ii)−F∥2+λ R(F). \hat{F}_i \;=\; \underset{F}{\arg\min}\;\bigl\|\text{FlowNet}(I_i) - F\bigr\|^2 + \lambda \, R(F).F^i=FargminFlowNet(Ii)−F2+λR(F).
- 这样会在后处理阶段,将网络输出的光流修正到更符合生理或几何先验的解。
-
在网络结构中内嵌先验模块
- 将 SSM(统计形状模型)或 Biomechanical 模块作为网络子层:
- 先用 CNN 提取器官表面特征 → 得到初始形变场 → 用有限元或 PCA 形状空间“投影”校正 → 输出修正后的流场。
- 有些文献会把 FEM 或 ASM 以可微分的方式嵌入网络(图卷积、变分层等),使得反向传播可以跨过该物理/统计模块。
- 将 SSM(统计形状模型)或 Biomechanical 模块作为网络子层:
3、进一步解释
-
为什么需要器官形变先验?
- 在单帧无其他约束的情况下,光流场并不具有足够信息去“推断”出真实的三维位移。但器官有相对有限的形变模式(如呼吸运动的周期性、血管拉伸的形变模式等),把这些限制加入网络,就能避免出现不合理的“流场”预测。
-
不同器官、不同成像模式会需要不同的先验:胃肠道的蠕动、心肌的收缩,或者肝脏因呼吸产生的整体位移/弯曲,都会有不同的力学或统计特征。
-
与所用网络的衔接:只要在最终能得到一个合理的 2D 光流/形变场 FiF_iFi,就能直接将其作为网络 Flow 分支的输入。具体实现可把先验嵌入到 FlowNet 内部(网络结构或损失函数),或者在 FlowNet 之外做后处理都行。