一 插入排序了解
插入排序法的思路与打扑克排列手牌的方法很像,比如我们单手拿牌,然后要将牌从左至右,由小到大排序。此时我们需要将牌一张张抽出来,分别插入到前面已经拍好序的手牌的适当位置,重复这个操作直到插入最后一张牌,整个排序就完成了。
流程图:
二 插入排序伪代码实现
insertionSort(A,N)//包含N个元素的0起点数组A
{
for i 从 1到 N-1
{
V = A[i]
j=i-1
while(j>=0 且 A[j]>v)
{
A[j+1]=A[j]
j--;
}
A[j+1]=v
}
}
三 插入排序 c++ 代码实现
插入排序法所需的主要变量:
A[N] | 长度为N的整型数组 |
---|---|
i | 循环变量,表示未排序部分的开头元素,初始值为1 |
v | 临时保存 A[ i ] 值的变量 |
j | 循环变量,用于在已排序部分寻找v的插入位置 |
代码如下:
void InsertionSort(vector<int> &ivec)
{
if(ivec.size()==0) return;
for (decltype(ivec.size()) i = 1; i !=ivec.size() ; ++i) {
auto v=ivec.at(i);
j=i-1;
while(j>=0 && ivec.at(j)>v) //寻找插入位置的过程
{
ivec.at(j+1)=ivec.at(j); //需要将插入位置之后的元素向后移动
--j;
}
ivec.at(j+1)=v; //找到插入位置
}
}
四 插入排序时间复杂度与稳定性分析。
稳定性: 在插入排序算法中,我们只将比v(取出的值)大的元素向后平移,不相邻的元素不会直接交换位置,因此排序算法十分稳定。
复杂度:每个i循环A[ j ]元素向后移动的次数最坏情况下,每次 i 循环A[ j ]都要进行i次移动,共需要 1+2+3+4+。。。。。N-1=(N^2-N)/2,
即算法复杂度为 O(N^2)
插入排序对于输入数据的顺序能大幅降低它的复杂度,之前说过它最坏情况下即(降序排列)时间复杂度为O(N^2),如果输入序列为升序排列,那么A [j ]从头至尾都不需要移动,程序只需要经历N次比较便可执行完毕。因此,插入排序法的优点在于能快速处理相对有序的数据序列。
--------------------------------------------------------我是有底线的-------------------------------------------------------------
感谢能够观看博客的各位开发爱好者们,有问题或建议发表评论呐,★,°:.☆( ̄▽ ̄)/$:.°★ 。