第十四周组会—动态多目标优化算法论文汇总

一种基于相关性的分层预测方法,用于进化动态多目标优化

  • A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization

(Kunjie Yu , Member, IEEE, Dezheng Zhang , Jing Liang , Senior Member, IEEE,KeChen , Member, IEEE, Caitong Yue , Member, IEEE, Kangjia Qiao , Member, IEEE, and Ling Wang , Member, IEEE)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 5, OCTOBER 2023

现阶段存在的问题:

  • 在利用进化算法求解动态多目标优化问题时,广泛采用pareto前沿的一些特殊点的历史运用方向,如中心点和拐点,来预测pareto最优解集.
  • 但是某些特殊点可能会受到个别方向偏差大的个体影响,从而误导对动态pos的跟踪

提出的方法:

  • 提出基于相关性的分层预测方法,考虑个体运动方向的相关性,并将多个预测模型融合在一起求解问题.

整体的框架图如下:

种群划分:

  1. 首先计算出当前种群个体中心点的移动方向V0

    假设Xot是种群Pt在t时刻的中心点,计算方式为:

    再根据t-1时刻计算得出的X0t-1可以计算出中心点的移动方向V0并对他进行无纲量处理

  2.  计算出每个个体的移动方向.

    对于当前时间步长 xti 的个体,前一个时间步长 xt−1 i 中的相关解被标识为

    xti 的移动方向 vti 如图所示: 

  3. 计算个体方向和种群中心点移动方向的相关度 ,并通过相关度大小划分种群

        相关度公式:

        根据相关度大小按照6:3:1的比例划分种群为SubPH(高相关度),SubPM,SubPL

  • SubPH使用LPM预测出更准确的POS位置
  • SubPM使用所提出的DCM和LCM模型跟踪不断变化的POS流行
  • 而SubPL中的个体被视为尚未收敛到POS或跟踪POS的效率低下,用之前环境获得的分布良好的非支配解代替它以保持种群的多样性

方向矫正和长度矫正模型

对于LPM来说它总是关注特殊点,但是对于一些非线性变化的情况下,可能表现出较差的性能.

所以作者使用DCM方向矫正模型来纠正每个个体的方向

并且对一个向量来说它是既有长度又有方向,但是在相关性分析中只考虑了方向,忽略了长度上的差异,所以作者又提出LCM长度矫正模型来矫正向量的长度

DCM

首先,根据前面给的公式,计算出SubPM中个体X1,X2,X3中心点X1和他们的方向向量V1,V2,V3,V0

然后,转为一个标准球面坐标系通过中心点和个体的移动来混合预测角度。预测角度的公式如下

最后再将预测向量从标准球面坐标系转换为直角坐标系 

 LCM

DCM倾向于单一的个体信息,而LPM则侧重于整个人群的信息,然而,单个个体的运动方向并不稳定。因此,受LPM的启发,提出了LCM。与LPM不同,LCM中方向向量的长度被单个个体的长度所取代。 公式如图:

 自适应调整策略

根据两个模型在前一个环境中的性能动态调整两个模型的选择概率.

 对于一开始的两个环境,概率都设置为0.5.在往后的环境中,把两个模型生成的个体保存在外部存档中,一旦检测到环境变化,就会使用一个指标,即每个预测解与MOEA最近优化解的距离的平均值,来衡量哪个模型更好。指标定义如下:

SetT是时间 t 中大小为 Ns 的预测个体的集合,PtR为MOEA在时间t内优化的种群.
 

在进化多目标优化中通过局部子集选择增强多样性

Enhancing Diversity by Local Subset Selection in Evolutionary Multiobjective Optimization

(Zihan Wang , Student Member, IEEE, Bochao Mao ,HaoHao , Wenjing Hong , Member, IEEE, Chunyun Xiao, and Aimin Zhou , Senior Member, IEEE)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 5, OCTOBER 2023

为了能更好的解决解的收敛性和多样性的问题,提出了一种基于局部子集选择(LSS)的环境选择方法.

基于双搜索策略的多目标动态优化粒子群算法

A particle swarm algorithm based on the dual search strategy for dynamic multi-objective optimization

(Jintong Yang a,b,1, Juan Zou a,b,1,∗, Shengxiang Yang a,c, Yaru Hu a,b, Jinhua Zheng a,b, Yuan Liu a,b)

Swarm and Evolutionary Computation 83 (2023) 101385

动态多目标进化算法的一般框架

粒子群优化算法

在传统的 PSO 方法中,更新第 i 个粒子的速度和位置的方法如下:

其中,t 是迭代次数,vt i 和 xt i 分别代表第 i 个粒子的速度和位置。ω 是一个非负数,称为惯性因子,c1 和 c2 是加速度系数,r1 和 r2 是范围为[0,1]的随机数。对于粒子 i,pbestt i 表示第 t 次迭代时在其自身历史集合中发现的最佳位置,gbestt i 是全局最佳粒子的位置信息。

双搜索算法整体框架

在初始化阶段,生成一组分散在目标空间的参考向量 W,将一组问题分解为多个标量子问题,并引导粒子演化。然后,一组 P = {x1, x2, ..., xN },包含 N 个粒子,并初始化每个粒子的个人历史最优值(pbest)和整个粒子群的全局最优值(gbest)。同时,创建一个档案集 A,用于存储粒子群中的最优解,并将一个粒子群 P 分配给外部档案集 A。本文将 gbest 定义为档案集中 Crowding-distance 最大的解(边界粒子除外)

双搜索

传统的PSO算法问题:

  • 仅通过个体行为(pbest)和整个种群的社会行为(gbest)来更新每个粒子。在这种情况下,如果粒子的 gbest 或 pbest 是最优局部解,则粒子将被引导到最佳局部区域,从而丢失的算法所需要的种群多样性

提出的方法1:使用粒子来更新粒子速度

  • 为每个粒子的 pbest 和整个种群的 gbest 创建一个邻域,并计算存档集中的最优解粒子与pbest的欧几里得距离,。然后,将粒子 Pi 的邻域定义为存档集中粒子 Pi 的 pbest 最接近a的解 如图所示
  •  在所提出的邻域中,粒子 Pi 在 pbest 的邻域中随机选择一个解,并通过邻域学习。此外,从当前全局最优解 gbest 的邻域中随机选择一个粒子来更新粒子的速度 Pi 
  • 并将速度公式修改为
  • 其中 ω 是惯性权重,t 是迭代数,R1 和 R2 是 [0, 1] 中两个均匀分布的随机数。c1 和 c2 是两个学习因子,npt i 是第 t 次迭代中粒子 Pi 的 pbest 邻域的随机解,ngt i 是第 t 次迭代中粒子 Pi 的 gbest 邻域的随机解。

方法2:基于角度的粒子更新方法

  • 为了加快粒子快速收敛到POF,引入了一种基于角度的粒子更新方法,并通过非支配和拥挤度距离排序的方法对粒子进行选择.
  • 首先从已经挑选出来的粒子集合L随机选择两个解,并计算这两个解的粒子与xi的角度如图所示
  • 认为角度θ越小,粒子向前的驱动就越好。因此,当使用方程(9)更新速度时,它会快速引导相应的粒子在最优聚集值附近接近邻近区域
  • 其中 ω 是惯性权重,t 是迭代数,c1 是学习因子,r1 是 [0, 1] 中的随机数。pθ 是获胜者精英粒子的位置。
     

算法伪代码如图所示:

pbest和gbest的更新
 

如果后代粒子主导粒子 Pi 的 pbest,则粒子 Pi 的 pbest 将被替换。其次,如果后代粒子和粒子 Pi 的 pbest 不占主导地位,那么我们将比较它们的切比雪夫值。切比雪夫值较低的粒子更有可能将粒子 Pi 引导到有希望的区域。我们将精英粒子放入存档集中,因此我们从存档集合中选择具有最大拥挤距离的个体(边界粒子除外)作为最优全局个体(gbest)

切比雪夫值计算如下:

其中 Z∗ = (z∗ 1, ..., z∗ m) 是参考点(即,对于每个 i ∈ {1, ..., m},z∗ i = min{fi(x)})。W = {ω1, ..., ωN } 是一组均匀的权重向量

在算法执行环境选择后,我们按照定义更新 gbest。如果 pbesti 超过两代没有更新,我们将使用突变操作来帮助粒子有效地突破局部最优。

动态响应

归档预测

采用档案集的非支配解进行预测:

  • 首先,计算前两代非支配解的中心点
  • 然后,通过两个中心点的移动方向来预测 POS 的新位置。
  • 设 Act 是存档解中非主导集的中心点,At 是在时间步长 t 结束时获得的存档集的非主导解。中心点的计算公式如下: |At|是指时间t时存档中非支配解的数量,xt = (x1 t , ..., xn t ) 是时间 t 处的个体,因此,在时间 t 处称为 ΔAct 的中心点的移动方向可以定义为:
  • 根据移动方向预测下个时间的个体

分段搜索 

该策略主要以粒子群P中的非优势解为基准,沿矢量方向或相反方向生成解。属于粒子群P的粒子用于利用新信息来引入多样性。

  • 假设 Pct 是粒子群 P 在时间 t 处的非支配解的中心点。我们可以将漏洞利用步长定义为:
  • 然后,利用SPEA2的截断技术从粒子群P的非支配解中选出10个最优解,并表示为Bi(i ∈ {1, 2, ..., 10})。如果 F1 中的个体数量不够,则根据拥挤距离依次从 F2、...、Fα 中选择其余个体。在此过程中,矢量 ΔPct 的步长被均匀地分成 k 个部分。并通过方程生成新的解:为了使下标为正数,设置 j = β + 3

 

  • 19
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值