function main()
clc % 清屏
clear all; % 清除内存以便加快运算速度
close all; % 关闭当前所有figure图像
warning off; % 屏蔽没有必要的警告
SamNum=20; % 输入样本数量为20
TestSamNum=20; % 测试样本数量也是20
ForcastSamNum=2;% 预测样本数量为2
HiddenUnitNum=8;% 中间层隐节点数量取8
InDim=3; % 网络输入维度为3
OutDim=2; % 网络输出维度为2
% 原始数据
% 人数
sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
% 机动车数量
sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6 2.7 2.85 2.95 3.1];
sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 0.56 0.59 0.59 0.67 0.69 0.79];
% 公路客运量
glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 22598 25107 33442 36836 40548 42927 43467];
% 公路货运量
glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 13320 16762 18673 20724 20803 21804];
p=[sqrs;sqjdcs;sqglmj]; % 输入数据矩阵
t=[glkyl;glhyl]; % 目标数据矩阵
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始样本对(输入和输出)初始化
rand('state',sum(100*clock)); % 依据系统时钟种子产生随机数
NoiseVar=0.01; % 噪声强度为0.01(添加噪声的目的是为了防止网络过度拟合)
Noise=NoiseVar*randn(2,SamNum); % 生成噪声
SamOut=tn+Noise; % 将噪声添加到输出样本上
TestSamIn=SamIn; % 这里取输入样本与测试样本相同,因为样本容量偏少
TestSanOut=SamOut; % 也取输出样本与测试样本相同
MaxEpochs=50000; % 最多训练次数为50000
lr=0.035; % 学习速率为0.035
E0=0.65*10^(-3); % 目标误差为0.65*10^(-3)
W1=0.5*rand(HiddenUnitNum,InDim)-0.1;% 初始化输入层与隐含层之间的权值
B1=0.5*rand(HiddenUnitNum,1)-0.1;% 初始化输入层与隐含层之间的权值
W2=0.5*rand(OutDim,HiddenUnitNum)-0.1;% 初始化输出层与隐含层之间的权值
B2=0.5*rand(OutDim,1)-0.1;% 初始化输出层与隐含层之间的权值
ErrHistory=[]; % 给中间变量预先占据内存
for i=1:MaxEpochs
HiddenOut=logsig(W1*SamIn+repmat(B1,1,SamNum)); % 隐含层网络输出
NetworkOut=W2*HiddenOut+repmat(B2,1,SamNum); %输出层网络输出
Error=SamOut-NetworkOut; % 实际输出与网络输出之差
SSE=sumsqr(Error); % 能量函数(误差平方和)
ErrHistory=[ErrHistory SSE];
if SSE<E0,break,end % 如果达到误差要求则跳出学习循环
% 以下6行是BP网络最核心的程序
% 它们是权值(阙值)依据能量函数负梯度下降原理所做的每一步动态调整
Delta2=Error;
Delta1=W2'*Delta2.*HiddenOut.*(1-HiddenOut);
% 对输出层与隐含层之间的权值和阙值进行修正
dW2=Delta2*HiddenOut';
dB2=Delta2*ones(SamNum,1);
% 对输入层与隐含层之间的权值和阙值进行修正
dW1=Delta1*SamIn';
dB1=Delta1*ones(SamNum,1);
W2=W2+lr*dW2;
B2=B2+lr*dB2;
W1=W1+lr*dW1;
B1=B1+lr*dB1;
end
HiddenOut=logsig(W1*SamIn+repmat(B1,1,TestSamNum)); % 隐含层输出最终结果
NetworkOut=W2*HiddenOut+repmat(B2,1,TestSamNum); % 输出层输出最终结果
a=postmnmx(NetworkOut,mint,maxt); % 还原网络输出层的结果
x=1990:2009; % 时间轴刻度
newk=a(1,:); % 网络输出客运量
newh=a(2,:); % 网络输出货运量
figure;
subplot(2,1,1);plot(x,newk,'r-o',x,glkyl,'b--+'); % 绘制公路客运量对比图
legend('网络输出客运量','实际客运量');
xlabel('年份'); ylabel('客运量/万人');
title('源程序神经网络客运量学习和测试对比图');
subplot(2,1,2);plot(x,newh,'r-o',x,glhyl,'b--+'); % 绘制公路货运量对比图
legend('网络输出货运量','实际货运量');
xlabel('年份'); ylabel('货运量/万人');
title('源程序神经网络货运量学习和测试对比图');
% 利用训练好的数据进行预测
% 当用训练好的网络对新数据pnew进行预测时,也应做相应的处理
pnew=[73.39 75.55
3.9635 4.0975
0.9880 1.0268]; % 2010年和2011年的相关数据
pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化
HiddenOut=logsig(W1*pnewn+repmat(B1,1,ForcastSamNum)); % 隐含层输出预测结果
anewn=W2*HiddenOut+repmat(B2,1,ForcastSamNum); % 输出层输出预测结果
% 把网络预测得到的数据还原为原始的数量级
format short
anew=postmnmx(anewn,mint,maxt)
神经网络BP
最新推荐文章于 2022-08-10 13:14:54 发布