MATLAB在数学建模中的应用——神经网络

神经网络

人工神经网络是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。


  • BP神经网络
    BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

    神经元模型

    在这个模型中,神经元接收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过激活函数处理以产生神经元的输出。
    神经元模型

    常用的激活函数

    激活函数的种类
    阶跃函数和挤压函数

    神经网络

    神经网络就是由许多个这样的神经元按照一定的层次结构连接起来的。

    感知机与多层网络

    感知机是由两层神经元构成
    感知机
    其中权重和阈值可以通过学习得到,阈值可以看做是固定输入为-1的结点,这样就可以将权重和阈值的学习统一为权重的学习。

    感知机的优缺点:感知机只有输出层神经元进行激活函数处理,只有一层功能神经元,学习能力有限,无法解决非线性可分问题。但是对于线性可分的模式是适用的。
    多层前馈神经网络是更一般的神经网络结构,神经元之间不存在同层连接,也不存在跨层连接。

    误差逆传播算法

    误差逆传播算法简称BP算法,权重的更新参见笔记。
    标准的BP算法每次只针对一个样例,参数更新频繁,对于不同的样例参数更新可能出现抵消的情况。因此为了同时达到误差最小值,往往需要多次迭代。累积BP算法直接针对累积误差最小化,在读取整个训练集一遍后才进行参数的更新。
    隐层神经元的个数的设置常用试错法。

    全局最小和局部极小

    梯度下降法是我们常用的寻优方法,沿着负梯度方法下降最快,但是若当前点的梯度为零,则已经达到局部极小,但是不能保证这就是全局最小。通常我们采用以下的方法来跳出局部极小,从而进步一步接近全局最小。
    这里写图片描述

    其他常见的神经网络

    其他常见的神经网络有RBF网络,ART网络,参见《机器学习》周志华P108

    BP网络工具箱

    利用BP网络求解问题可以分为以下的模块
    1)数据的输入
    2)数据的归一化
    3)网络训练
    4)对原始数据进行仿真
    5)将原始数据与已知样本进行对比
    6)对新数据进行仿真
    例子如下
    工具箱的使用

% clc
%原始数据 
%人数(单位:万人)
sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...
       41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
%机动车数(单位:万辆)
sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...
        2.7 2.85 2.95 3.1];
%公路面积(单位:万平方公里)
sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 
         0.56 0.59 0.59 0.67 0.69 0.79];
%公路客运量(单位:万人)
glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...
        22598 25107 33442 36836 40548 42927 43462];
%公路货运量(单位:万吨)
glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...
        13320 16762 18673 20724 20803 21804];
p=[sqrs;sqjdcs;sqglmj];  %输入数据矩阵
t=[glkyl;glhyl];         %目标数据矩阵
%利用premnmx函数对数据进行归一化
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 对于输入矩阵p和输出矩阵t进行归一化处理
dx=[-1,1;-1,1;-1,1];                   %归一化处理后最小值为-1,最大值为1
%BP网络训练
net=newff(dx,[3,7,2],{'tansig','tansig','purelin'},'traingdx'); %建立模型,并用梯度下降法训练.
net.trainParam.show=1000;               %1000轮回显示一次结果
net.trainParam.Lr=0.05;                 %学习速度为0.05
net.trainParam.epochs=50000;           %最大训练轮回为50000次
net.trainParam.goal=0.65*10^(-3);     %均方误差
net=train(net,pn,tn);                   %开始训练,其中pn,tn分别为输入输出样本
%利用原始数据对BP网络仿真
an=sim(net,pn);           %用训练好的模型进行仿真
a=postmnmx(an,mint,maxt); % 把仿真得到的数据还原为原始的数量级;
%本例因样本容量有限使用训练数据进行测试,通常必须用新鲜数据进行测试
x=1990:2009;
newk=a(1,:);
newh=a(2,:);
figure (2);
subplot(2,1,1);plot(x,newk,'r-o',x,glkyl,'b--+')    %绘值公路客运量对比图;
legend('网络输出客运量','实际客运量');
xlabel('年份');ylabel('客运量/万人');
subplot(2,1,2);plot(x,newh,'r-o',x,glhyl,'b--+')     %绘制公路货运量对比图;
legend('网络输出货运量','实际货运量');
xlabel('年份');ylabel('货运量/万吨');
%利用训练好的网络进行预测
% 当用训练好的网络对新数据pnew进行预测时,也应作相应的处理:
pnew=[73.39 75.55
      3.9635 4.0975
      0.9880 1.0268];           %2010年和2011年的相关数据;
pnewn=tramnmx(pnew,minp,maxp); %利用原始输入数据的归一化参数对新数据进行归一化;
anewn=sim(net,pnewn);            %利用归一化后的数据进行仿真;
anew=postmnmx(anewn,mint,maxt)  %把仿真得到的数据还原为原始的数量级;

源程序代码

% clc                          % 清屏
% clear all;                  %清除内存以便加快运算速度
% close all;                  %关闭当前所有figure图像
% MATLAB在数学建模中的应用P121
SamNum=20;                  %输入样本数量为20
TestSamNum=20;              %测试样本数量也是20
ForcastSamNum=2;            %预测样本数量为2
HiddenUnitNum=8;            %中间层隐节点数量取8,比工具箱程序多了1个
InDim=3;                    %网络输入维度为3
OutDim=2;                   %网络输出维度为2

%原始数据 
%人数(单位:万人)
sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...
       41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
%机动车数(单位:万辆)
sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...
        2.7 2.85 2.95 3.1];
%公路面积(单位:万平方公里)
sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 
         0.56 0.59 0.59 0.67 0.69 0.79];
%公路客运量(单位:万人)
glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...
        22598 25107 33442 36836 40548 42927 43462];
%公路货运量(单位:万吨)
glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...
        13320 16762 18673 20724 20803 21804];
p=[sqrs;sqjdcs;sqglmj];  %输入数据矩阵
t=[glkyl;glhyl];           %目标数据矩阵
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始样本对(输入和输出)初始化

rand('state',sum(100*clock))   %依据系统时钟种子产生随机数         
NoiseVar=0.01;                    %噪声强度为0.01(添加噪声的目的是为了防止网络过度拟合)
Noise=NoiseVar*randn(2,SamNum);   %生成噪声
SamOut=tn + Noise;                   %将噪声添加到输出样本上

TestSamIn=SamIn;                           %这里取输入样本与测试样本相同因为样本容量偏少
TestSamOut=SamOut;                         %也取输出样本与测试样本相同

MaxEpochs=50000;                              %最多训练次数为50000
lr=0.035;                                       %学习速率为0.035
E0=0.65*10^(-3);                              %目标误差为0.65*10^(-3)
W1=0.5*rand(HiddenUnitNum,InDim)-0.1;   %初始化输入层与隐含层之间的权值
B1=0.5*rand(HiddenUnitNum,1)-0.1;       %初始化输入层与隐含层之间的阈值
W2=0.5*rand(OutDim,HiddenUnitNum)-0.1; %初始化输出层与隐含层之间的权值              
B2=0.5*rand(OutDim,1)-0.1;                %初始化输出层与隐含层之间的阈值

ErrHistory=[];                              %给中间变量预先占据内存
for i=1:MaxEpochs

    HiddenOut=logsig(W1*SamIn+repmat(B1,1,SamNum)); % 隐含层网络输出
    NetworkOut=W2*HiddenOut+repmat(B2,1,SamNum);    % 输出层网络输出
    Error=SamOut-NetworkOut;                       % 实际输出与网络输出之差
    SSE=sumsqr(Error)                               %能量函数(误差平方和)

    ErrHistory=[ErrHistory SSE];

    if SSE<E0,break, end      %如果达到误差要求则跳出学习循环

    % 以下六行是BP网络最核心的程序
    % 他们是权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量
    Delta2=Error;
    Delta1=W2'*Delta2.*HiddenOut.*(1-HiddenOut);    

    dW2=Delta2*HiddenOut';
    dB2=Delta2*ones(SamNum,1);

    dW1=Delta1*SamIn';
    dB1=Delta1*ones(SamNum,1);
    %对输出层与隐含层之间的权值和阈值进行修正
    W2=W2+lr*dW2;
    B2=B2+lr*dB2;
    %对输入层与隐含层之间的权值和阈值进行修正
    W1=W1+lr*dW1;
    B1=B1+lr*dB1;
end

HiddenOut=logsig(W1*SamIn+repmat(B1,1,TestSamNum)); % 隐含层输出最终结果
NetworkOut=W2*HiddenOut+repmat(B2,1,TestSamNum);    % 输出层输出最终结果
a=postmnmx(NetworkOut,mint,maxt);               % 还原网络输出层的结果
x=1990:2009;                                        % 时间轴刻度
newk=a(1,:);                                        % 网络输出客运量
newh=a(2,:);                                        % 网络输出货运量
figure ;
subplot(2,1,1);plot(x,newk,'r-o',x,glkyl,'b--+')    %绘值公路客运量对比图;
legend('网络输出客运量','实际客运量');
xlabel('年份');ylabel('客运量/万人');
subplot(2,1,2);plot(x,newh,'r-o',x,glhyl,'b--+')     %绘制公路货运量对比图;
legend('网络输出货运量','实际货运量');
xlabel('年份');ylabel('货运量/万吨');

% 利用训练好的网络进行预测
% 当用训练好的网络对新数据pnew进行预测时,也应作相应的处理
pnew=[73.39 75.55
      3.9635 4.0975
      0.9880 1.0268];                     %2010年和2011年的相关数据;
pnewn=tramnmx(pnew,minp,maxp);         %利用原始输入数据的归一化参数对新数据进行归一化;
HiddenOut=logsig(W1*pnewn+repmat(B1,1,ForcastSamNum)); % 隐含层输出预测结果
anewn=W2*HiddenOut+repmat(B2,1,ForcastSamNum);           % 输出层输出预测结果

%把网络预测得到的数据还原为原始的数量级;
anew=postmnmx(anewn,mint,maxt)  
  • 9
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值