Machine Learning
文章平均质量分 68
chqb89
这个作者很懒,什么都没留下…
展开
-
函数间隔(functional margin)和几何间隔(geometric margin)
对于给定的训练数据集T和超平面(w,b),定义超平面关于样本点(x_i,y_i)的函数间隔为定义超平面(w,b)关于训练数据集T的函数间隔为超平面关于T中所有样本点的函数间隔之最小值,即 函数间隔可以表示分类预测的正确性及确信度,但选择分离超平面时,只有函数间隔还不够,因为只要成比例改变w和b,超平面并没有改变,但函数间隔却变了,因此需要对分离超平面的法原创 2013-04-28 11:15:12 · 8635 阅读 · 2 评论 -
支持向量机——SVM算法及例子(代码)
终于拖到最后一天交机器学习作业,选择了SVM算法,之前一直听说过,现在终于有了初步的了解,顺便post到这里分享一下,不足地方请大家指出本文内容有来自《统计学习算法》(李航 著)第7章——支持向量机同时也看了Stanford机器学习公开课概要支持向量机属于监督学习,是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,支持向量机包括核心技巧,这使它成为实原创 2013-04-30 16:50:18 · 9103 阅读 · 0 评论 -
EM算法及其应用(代码)
最近上模式识别的课需要做EM算法的作业,看了机器学习公开课及网上的一些例子,总结如下:(中间部分公式比较多,不能直接粘贴上去,为了方便用了截图,请见谅)概要适用问题EM算法是一种迭代算法,主要用于计算后验分布的众数或极大似然估计,广泛地应用于缺损数据、截尾数据、成群数据、带有讨厌参数的数据等所谓不完全数据的统计推断问题。优缺点优点:EM算法简单且稳定,迭代能保证观察数据对数后验原创 2013-04-30 15:02:48 · 6205 阅读 · 0 评论 -
0-1背包问题、旅行推销员问题TSP
0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全原创 2013-05-03 23:28:17 · 2192 阅读 · 0 评论 -
神经网络算法的一个简单例子
部分内容引用到http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.htmlnewff函数newff函数语法 newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。语法:net = newff ( A, B, {C} ,‘trainFun’)参原创 2013-05-03 20:58:26 · 6766 阅读 · 0 评论