部分内容引用到
http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html
newff函数
<1>newff函数语法
newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。
语法:net = newff ( A, B, {C} ,‘trainFun’)
参数:
A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;
B:一个k维行向量,其元素为网络中各层节点数;
C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;
trainFun :为学习规则采用的训练算法。
<2>常用的激活函数
常用的激活函数有:
a) 线性函数 (Linear transfer function) f(x)=x
该函数的字符串为’purelin’。b) 对数S形转移函数( Logarithmic sigmoid transfer function )
该函数的字符串为’logsig’。
c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )
也就是上面所提到的双极S形函数。
该函数的字符串为’ tansig’。
Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。
<3>常见的训练函数
常见的训练函数有:
traingd :梯度下降BP训练函数(Gradient descent backpropagation)
traingdx :梯度下降自适应学习率训练函数
<4>网络配置参数
一些重要的网络配置参数如下:
net.trainparam.goal :神经网络训练的目标误差
net.trainparam.show : 显示中间结果的周期
net.trainparam.epochs :最大迭代次数
net.trainParam.lr : 学习率
train函数
网络训练学习函数。
语法:[ net, tr, Y1, E ] = train( net, X, Y )
参数:
X:网络实际输入
Y:网络应有输出
tr:训练跟踪信息
Y1:网络实际输出
E:误差矩阵
sim函数
语法:Y=sim(net,X)
参数:
net:网络
X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数
Y:输出矩阵Q×N,其中Q为网络输出个数
% 采用动量梯度下降算法训练 BP 网络。
% 训练样本定义如下:
% 输入矢量为
% p =[-1 -2 3 1
% -1 1 5 -3]
% 目标矢量为 t = [-1 -1 1 1]
close all
clear
clc
% ---------------------------------------------------------------
% NEWFF——生成一个新的前向神经网络,函数格式:
% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,
% PR -- R x 2 matrix of min and max values for R input elements
% (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的边界值)
% Si -- 第i层的维数
% TFi -- 第i层的传递函数, default = 'tansig'
% BTF -- 反向传播网络的训练函数, default = 'traingdx'
% BLF -- 反向传播网络的权值/阈值学习函数, default = 'learngdm'
% PF -- 性能函数, default = 'mse'
% ---------------------------------------------------------------
% TRAIN——对 BP 神经网络进行训练,函数格式:
% train(NET,P,T,Pi,Ai,VV,TV),输入参数:
% net -- 所建立的网络
% P -- 网络的输入
% T -- 网络的目标值, default = zeros
% Pi -- 初始输入延迟, default = zeros
% Ai -- 初始网络层延迟, default = zeros
% VV -- 验证向量的结构, default = []
% TV -- 测试向量的结构, default = []
% 返回值:
% net -- 训练之后的网络
% TR -- 训练记录(训练次数及每次训练的误差)
% Y -- 网络输出
% E -- 网络误差
% Pf -- 最终输入延迟
% Af -- 最终网络层延迟
% ---------------------------------------------------------------
% SIM——对 BP 神经网络进行仿真,函数格式:
% [Y,Pf,Af,E,perf] = sim(net,P,PiAi,T)
% 参数与前同。
% ---------------------------------------------------------------
%
% 定义训练样本
% P 为输入矢量
echo on
P=[-1, -2, 3, 1;
-1, 1, 5, -3];
% T 为目标矢量
T=[-1, -1, 1, 1];
% 创建一个新的前向神经网络
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% ---------------------------------------------------------------
% 训练函数:traingdm,功能:以动量BP算法修正神经网络的权值和阈值。
% 它的相关特性包括:
% epochs:训练的次数,默认:100
% goal:误差性能目标值,默认:0
% lr:学习率,默认:0.01
% max_fail:确认样本进行仿真时,最大的失败次数,默认:5
% mc:动量因子,默认:0.9
% min_grad:最小梯度值,默认:1e-10
% show:显示的间隔次数,默认:25
% time:训练的最长时间,默认:inf
% ---------------------------------------------------------------
% 当前输入层权值和阈值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
% 设置网络的训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
% 调用 TRAINGDM 算法训练 BP 网络
[net,tr]=train(net,P,T);
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
echo off
figure;
plot((1:4),T,'-*',(1:4),A,'-o')