Description
你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的。 这里是 n=29 的二个例子:
r 代表 红色的珠子
b 代表 蓝色的珠子
w 代表 白色的珠子
第一和第二个珠子在图片中已经被作记号。
图片 A 中的项链可以用下面的字符串表示:
brbrrrbbbrrrrrbrrbbrbbbb
假如你要在一些点打破项链,展开成一条直线,然后从一端开始收集同颜色的珠子直到你遇到一个不同的颜色珠子,在另一端做同样的事。(颜色可能与在这之前收集的不同) 确定应该在哪里打破项链来收集到最大多数的数目的子。 Example 举例来说,在图片 A 中的项链,可以收集到8个珠子,在珠子 9 和珠子 10 或珠子 24 和珠子 25 之间打断项链。 在一些项链中,包括白色的珠子如图片 B 所示。 当收集珠子的时候,一个被遇到的白色珠子可以被当做红色也可以被当做蓝色。 表现项链的字符串将会包括三符号 r , b 和 w 。 写一个程序来确定从一条被供应的项链最大可以被收集珠子数目。
Input
第 1 行: N, 珠子的数目
第 2 行: 一串度为N的字符串, 每个字符是 r , b 或 w。
Output
单独的一行包含从被供应的项链可以被收集的珠子数目的最大值。
Sample Input
29 wwwbbrwrbrbrrbrbrwrwwrbwrwrrb
Sample Output
11
解题思路:模拟在字符串的每个位置切开,然后用while语句进行计数,当max为最大的时候输出即可。
程序:
var
i,j,l,x,y,n,max:longint;
s:array[1..1000] of char;
begin
readln(n);
for i:=1 to n do
read(s[i]);
s[n+1]:=s[n];
for i:=1 to n do
begin
j:=0;
x:=i;
while (s[x]='w') and (j
begin
inc(j);
dec(x);
if x<1 then x:=n;
end;
l:=x;
while (s[x]=s[l]) and (j
begin
inc(j);
dec(x);
if x<1 then x:=n;
end;
y:=i+1;
if y>n then y:=1;
while (s[y]='w') and (j
begin
inc(j);
inc(y);
if y>n then y:=1;
end;
l:=y;
while (s[y]=s[l]) and (j
begin
inc(j);
inc(y);
if y>n then y:=1;
end;
if j>max then max:=j;
end;
writeln(max);
end.